論文の概要: A 10.8mW Mixed-Signal Simulated Bifurcation Ising Solver using SRAM Compute-In-Memory with 0.6us Time-to-Solution
- arxiv url: http://arxiv.org/abs/2504.10384v1
- Date: Mon, 14 Apr 2025 16:28:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:49:57.632451
- Title: A 10.8mW Mixed-Signal Simulated Bifurcation Ising Solver using SRAM Compute-In-Memory with 0.6us Time-to-Solution
- Title(参考訳): SRAMコンピュート・イン・メモリによる10.8mW混合信号同期分岐アイシングソル
- Authors: Alana Marie Dee, Sajjad Moazeni,
- Abstract要約: 本研究は、NPハード最適化問題に対するCMOSにおけるシミュレート・バイフルケーション(SB)イジング問題を提示する。
従来提案していたCMOSのIsingソルバと比較して, 時間と解法, 電力の大幅な改善を実現している。
- 参考スコア(独自算出の注目度): 1.534667887016089
- License:
- Abstract: Combinatorial optimization problems are funda- mental for various fields ranging from finance to wireless net- works. This work presents a simulated bifurcation (SB) Ising solver in CMOS for NP-hard optimization problems. Analog domain computing led to a superior implementation of this algorithm as inherent and injected noise is required in SB Ising solvers. The architecture novelties include the use of SRAM compute-in-memory (CIM) to accelerate bifurcation as well as the generation and injection of optimal decaying noise in the analog domain. We propose a novel 10-T SRAM cell capable of performing ternary multiplication. When measured with 60- node, 50% density, random, binary MAXCUT graphs, this all- to-all connected Ising solver reliably achieves above 93% of the ground state solution in 0.6us with 10.8mW average power in TSMC 180nm CMOS. Our chip achieves an order of magnitude improvement in time-to-solution and power compared to previously proposed Ising solvers in CMOS and other platforms.
- Abstract(参考訳): 組合せ最適化問題は、ファイナンスからワイヤレスネットワークまで、さまざまな分野において、ファンダメンタルである。
本研究は、NPハード最適化問題に対するCMOSにおけるシミュレート・バイフルケーション(SB)イジング問題を提示する。
アナログ・ドメイン・コンピューティングは、SBイジング・ソルバに固有のノイズと注入ノイズを必要とするため、このアルゴリズムの優れた実装につながった。
アーキテクチャの新規性には、分岐を加速するためのSRAM計算インメモリ(CIM)の使用、アナログ領域における最適な減衰ノイズの生成と注入が含まれる。
3次乗算が可能な新しい10-T SRAMセルを提案する。
60ノード、50%密度、ランダム、二値MAXCUTグラフで測定すると、この全対全連結イジング解法は0.6usで基底状態解の93%以上を確実に達成し、TSMC 180nm CMOSでは平均出力は10.8mWである。
我々のチップは、CMOSや他のプラットフォームで提案されたIsingソルバと比較して、時間-解法と電力の大幅な改善を実現している。
関連論文リスト
- Resistive Memory-based Neural Differential Equation Solver for Score-based Diffusion Model [55.116403765330084]
スコアベースの拡散のような現在のAIGC法は、迅速性と効率性の点で依然として不足している。
スコアベース拡散のための時間連続型およびアナログ型インメモリ型ニューラル微分方程式解法を提案する。
我々は180nmの抵抗型メモリインメモリ・コンピューティング・マクロを用いて,我々の解を実験的に検証した。
論文 参考訳(メタデータ) (2024-04-08T16:34:35Z) - Fast, Scalable, Warm-Start Semidefinite Programming with Spectral
Bundling and Sketching [53.91395791840179]
我々は、大規模なSDPを解くための、証明可能な正確で高速でスケーラブルなアルゴリズムであるUnified Spectral Bundling with Sketching (USBS)を提案する。
USBSは、20億以上の決定変数を持つインスタンス上で、最先端のスケーラブルなSDP解決器よりも500倍のスピードアップを提供する。
論文 参考訳(メタデータ) (2023-12-19T02:27:22Z) - Pruning random resistive memory for optimizing analogue AI [54.21621702814583]
AIモデルは、エネルギー消費と環境持続可能性に前例のない課題を提示する。
有望な解決策の1つは、アナログコンピューティングを再考することである。
ここでは、構造的塑性に着想を得たエッジプルーニングを用いたユニバーサルソリューション、ソフトウェア・ハードウエアの共設計について報告する。
論文 参考訳(メタデータ) (2023-11-13T08:59:01Z) - A 65nm 8b-Activation 8b-Weight SRAM-Based Charge-Domain Computing-in-Memory Macro Using A Fully-Parallel Analog Adder Network and A Single-ADC Interface [16.228299091691873]
コンピューティング・イン・メモリ(Computer-in-Memory, CiM)は、メモリ内の多重累積演算を可能にする、有望な緩和手法である。
この研究は、CIFAR-10データセットで88.6%の精度を示しながら、51.2GOPSのスループットと10.3TOPS/Wエネルギー効率を達成する。
論文 参考訳(メタデータ) (2022-11-23T07:52:10Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
我々は、様々なレベルの接続性を持つハードウェアアーキテクチャのための最適化回路により、期待されるリソース要求のスケーリングを定量化する。
問題の大きさと問題グラフの次数で指数関数的に増大する。
これらの問題は、ハードウェア接続性の向上や、より少ない回路層で高い性能を達成するQAOAの変更によって緩和される可能性がある。
論文 参考訳(メタデータ) (2022-01-06T21:02:30Z) - On Extending Amdahl's law to Learn Computer Performance [0.0]
並列計算機性能の学習問題はマルチコアプロセッサの文脈で検討される。
我々は、Amdahlの法則を拡張して、複数のリソースを全体的なスピードアップ方程式に適合させることを提案する。
高速化方程式を機械学習に適した多変数回帰問題に変換する。
論文 参考訳(メタデータ) (2021-10-15T02:37:07Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
通信ネットワークのノード間を分散的に保存するスムーズで強い凸関数の和を最小化するタスクについて検討する。
我々は、これらの下位境界を達成するための2つの最適アルゴリズムを設計する。
我々は,既存の最先端手法と実験的な比較を行うことにより,これらのアルゴリズムの理論的効率を裏付ける。
論文 参考訳(メタデータ) (2021-06-08T15:54:44Z) - Memristive Stochastic Computing for Deep Learning Parameter Optimization [1.6344851071810071]
コンピューティング(sc)は、ビットストリームとデジタルロジックを用いた様々な演算処理の低コストかつ低消費電力化を可能にするコンピューティングパラダイムである。
40nmの補完金属酸化物半導体(CMOS)プロセスを使用することで、拡張可能なアーキテクチャは1.55mm$2$を占め、文字認識タスクのために訓練されている間、畳み込みニューラルネットワーク(CNN)のパラメータを最適化する際に約167$mu$Wを消費します。
論文 参考訳(メタデータ) (2021-03-11T07:10:32Z) - Plug-And-Play Learned Gaussian-mixture Approximate Message Passing [71.74028918819046]
そこで本研究では,従来のi.i.d.ソースに適した圧縮圧縮センシング(CS)リカバリアルゴリズムを提案する。
我々のアルゴリズムは、Borgerdingの学習AMP(LAMP)に基づいて構築されるが、アルゴリズムに普遍的な復調関数を採用することにより、それを大幅に改善する。
数値評価により,L-GM-AMPアルゴリズムは事前の知識を必要とせず,最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-11-18T16:40:45Z) - Q-EEGNet: an Energy-Efficient 8-bit Quantized Parallel EEGNet
Implementation for Edge Motor-Imagery Brain--Machine Interfaces [16.381467082472515]
運動画像脳-機械インタフェース(MI-BMI)は、人間の脳と機械間の直接的かつアクセス可能なコミュニケーションをプロミットする。
脳波信号を分類するためのディープラーニングモデルが登場した。
これらのモデルは、メモリと計算要求のため、エッジデバイスの限界を超えることが多い。
論文 参考訳(メタデータ) (2020-04-24T12:29:03Z) - CSM-NN: Current Source Model Based Logic Circuit Simulation -- A Neural
Network Approach [5.365198933008246]
CSM-NNは、最適化されたニューラルネットワーク構造と処理アルゴリズムを備えたスケーラブルなシミュレーションフレームワークである。
実験によると、CSM-NNはCPU上で動作する最先端のソースモデルベースのシミュレータと比較して、シミュレーション時間を最大6倍に短縮する。
CSM-NNはまた、HSPICEと比較して2%以下の誤差で高い精度のレベルを提供する。
論文 参考訳(メタデータ) (2020-02-13T00:29:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。