論文の概要: A 65nm 8b-Activation 8b-Weight SRAM-Based Charge-Domain Computing-in-Memory Macro Using A Fully-Parallel Analog Adder Network and A Single-ADC Interface
- arxiv url: http://arxiv.org/abs/2212.04320v2
- Date: Tue, 2 Apr 2024 07:58:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 14:11:24.385006
- Title: A 65nm 8b-Activation 8b-Weight SRAM-Based Charge-Domain Computing-in-Memory Macro Using A Fully-Parallel Analog Adder Network and A Single-ADC Interface
- Title(参考訳): 65nm 8b-Activation 8b-Weight SRAM-based Charge-Domain Computing-in-Memory Macro using a Fully-Parallel Analog Adder Network and a Single-ADC Interface
- Authors: Guodong Yin, Mufeng Zhou, Yiming Chen, Wenjun Tang, Zekun Yang, Mingyen Lee, Xirui Du, Jinshan Yue, Jiaxin Liu, Huazhong Yang, Yongpan Liu, Xueqing Li,
- Abstract要約: コンピューティング・イン・メモリ(Computer-in-Memory, CiM)は、メモリ内の多重累積演算を可能にする、有望な緩和手法である。
この研究は、CIFAR-10データセットで88.6%の精度を示しながら、51.2GOPSのスループットと10.3TOPS/Wエネルギー効率を達成する。
- 参考スコア(独自算出の注目度): 16.228299091691873
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Performing data-intensive tasks in the von Neumann architecture is challenging to achieve both high performance and power efficiency due to the memory wall bottleneck. Computing-in-memory (CiM) is a promising mitigation approach by enabling parallel in-situ multiply-accumulate (MAC) operations within the memory with support from the peripheral interface and datapath. SRAM-based charge-domain CiM (CD-CiM) has shown its potential of enhanced power efficiency and computing accuracy. However, existing SRAM-based CD-CiM faces scaling challenges to meet the throughput requirement of high-performance multi-bit-quantization applications. This paper presents an SRAM-based high-throughput ReLU-optimized CD-CiM macro. It is capable of completing MAC and ReLU of two signed 8b vectors in one CiM cycle with only one A/D conversion. Along with non-linearity compensation for the analog computing and A/D conversion interfaces, this work achieves 51.2GOPS throughput and 10.3TOPS/W energy efficiency, while showing 88.6% accuracy in the CIFAR-10 dataset.
- Abstract(参考訳): von Neumannアーキテクチャでデータ集約的なタスクを実行することは、メモリ壁のボトルネックのため、高性能と電力効率の両方を達成するのが困難である。
CiM(Computer-in-Memory)は、周辺インタフェースとデータパスのサポートにより、メモリ内のMAC(in-situ multiply-accumulate)操作を並列に行えるようにする、有望な緩和手法である。
SRAMベースのチャージドメインCiM(CD-CiM)は、電力効率と計算精度を向上する可能性を示している。
しかし、既存のSRAMベースのCD-CiMは、高性能なマルチビット量子化アプリケーションのスループット要件を満たすためのスケーリングの課題に直面している。
本稿では,SRAMを用いた高スループットReLU最適化CD-CiMマクロを提案する。
1つのCiMサイクルで2つの符号付き8bベクトルのMACとReLUを1つのA/D変換で完了させることができる。
アナログ計算とA/D変換インタフェースの非線形補正に加えて、51.2GOPSスループットと10.3TOPS/Wエネルギー効率を実現し、CIFAR-10データセットの88.6%の精度を示した。
関連論文リスト
- Efficient and accurate neural field reconstruction using resistive memory [52.68088466453264]
デジタルコンピュータにおける従来の信号再構成手法は、ソフトウェアとハードウェアの両方の課題に直面している。
本稿では,スパース入力からの信号再構成のためのソフトウェア・ハードウェア協調最適化を用いた体系的アプローチを提案する。
この研究は、AI駆動の信号復元技術を進歩させ、将来の効率的で堅牢な医療AIと3Dビジョンアプリケーションへの道を開く。
論文 参考訳(メタデータ) (2024-04-15T09:33:09Z) - Pruning random resistive memory for optimizing analogue AI [54.21621702814583]
AIモデルは、エネルギー消費と環境持続可能性に前例のない課題を提示する。
有望な解決策の1つは、アナログコンピューティングを再考することである。
ここでは、構造的塑性に着想を得たエッジプルーニングを用いたユニバーサルソリューション、ソフトウェア・ハードウエアの共設計について報告する。
論文 参考訳(メタデータ) (2023-11-13T08:59:01Z) - DDC-PIM: Efficient Algorithm/Architecture Co-design for Doubling Data
Capacity of SRAM-based Processing-In-Memory [6.367916611208411]
等価データ容量を効果的に2倍にする効率的なアルゴリズム/アーキテクチャ共設計手法であるDDC-PIMを提案する。
DDC-PIMはMobileNetV2で約2.84タイム、EfficientNet-B0で約2.69タイム、精度の損失は無視できる。
最先端のマクロと比較して、DDC-PIMは重量密度と面積効率をそれぞれ最大8.41タイムと2.75タイムに改善する。
論文 参考訳(メタデータ) (2023-10-31T12:49:54Z) - A 137.5 TOPS/W SRAM Compute-in-Memory Macro with 9-b Memory
Cell-Embedded ADCs and Signal Margin Enhancement Techniques for AI Edge
Applications [20.74979295607707]
CIMマクロは4x4ビットMAC演算を実行し、9ビット符号付き出力を出力できる。
細胞の無害放電枝を用いて、時間変調MACと9ビットADC読み出し操作を適用する。
論文 参考訳(メタデータ) (2023-07-12T06:20:19Z) - DAISM: Digital Approximate In-SRAM Multiplier-based Accelerator for DNN
Training and Inference [4.718504401468233]
PIMソリューションは、まだ成熟していない新しいメモリ技術か、パフォーマンス上のオーバーヘッドとスケーラビリティの問題のあるビットシリアル計算に依存している。
本稿では,従来のメモリを用いてビット並列計算を行い,複数のワードラインのアクティベーションを利用する,SRAM内デジタル乗算器を提案する。
次に、この乗算器を利用したアーキテクチャであるDAISMを導入し、SOTAと比較して最大2桁高い面積効率を実現し、競争エネルギー効率を向上する。
論文 参考訳(メタデータ) (2023-05-12T10:58:21Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
Adapter-ALBERTは、様々なタスクにわたる最大データ再利用のための効率的なモデル最適化である。
検証されたNLPエッジアクセラレータ上でシミュレーションを行うことにより、モデルを不均一なオンチップメモリアーキテクチャにマッピングする利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T14:40:59Z) - A Charge Domain P-8T SRAM Compute-In-Memory with Low-Cost DAC/ADC
Operation for 4-bit Input Processing [4.054285623919103]
本稿では,PMOS ベースの 8T (P-8T) Compute-In-Memory (CIM) アーキテクチャを提案する。
4ビットの入力アクティベーションと8ビットの重みの間の乗算累積(MAC)演算を効率よく行う。
28nm CMOSプロセスを用いた256X80 P-8T CIMマクロ実装は、91.46%と66.67%の精度を示している。
論文 参考訳(メタデータ) (2022-11-29T08:15:27Z) - RAMP: A Flat Nanosecond Optical Network and MPI Operations for
Distributed Deep Learning Systems [68.8204255655161]
我々は、RAMPと呼ばれるナノ秒再構成による、ほぼスケール、全2分割帯域、オールツーオール、シングルホップ、オール光学ネットワークアーキテクチャを導入する。
RAMPは、最大65,536ノードで1ノードあたり12.8Tbpsの大規模分散並列コンピューティングシステムをサポートしている。
論文 参考訳(メタデータ) (2022-11-28T11:24:51Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
インテリジェント・リフレクション・サーフェス(IRS)は将来の無線ネットワークに広く応用されることが想定されている。
本稿では,エネルギー収穫能力を備えた協調型IRSデバイスを用いたマルチユーザ通信システムについて検討する。
論文 参考訳(メタデータ) (2022-03-26T20:37:14Z) - AnalogNets: ML-HW Co-Design of Noise-robust TinyML Models and Always-On
Analog Compute-in-Memory Accelerator [50.31646817567764]
本稿では,キーワードスポッティング (KWS) と視覚覚醒語 (VWW) を常用するTinyMLモデルについて述べる。
アナログ非イデオロギーに面した精度を維持するため、包括的学習手法を詳述する。
また、プログラム可能な最小領域位相変化メモリ(PCM)アナログCiMアクセラレータであるAON-CiMについて述べる。
論文 参考訳(メタデータ) (2021-11-10T10:24:46Z) - CAP-RAM: A Charge-Domain In-Memory Computing 6T-SRAM for Accurate and
Precision-Programmable CNN Inference [27.376343943107788]
CAP-RAMは、コンパクトで、正確で、ビット幅でプログラム可能なインメモリ・コンピューティング(IMC)の静的ランダムアクセスメモリ(SRAM)マクロである。
エネルギー効率の良い畳み込みニューラルネットワーク(CNN)の推論を行う。
65nmのプロトタイプは、CAP-RAMの優れた線形性と計算精度を検証する。
論文 参考訳(メタデータ) (2021-07-06T04:59:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。