Teacher Motion Priors: Enhancing Robot Locomotion over Challenging Terrain
- URL: http://arxiv.org/abs/2504.10390v1
- Date: Mon, 14 Apr 2025 16:36:56 GMT
- Title: Teacher Motion Priors: Enhancing Robot Locomotion over Challenging Terrain
- Authors: Fangcheng Jin, Yuqi Wang, Peixin Ma, Guodong Yang, Pan Zhao, En Li, Zhengtao Zhang,
- Abstract summary: This paper introduces a teacher prior framework based on the teacher student paradigm.<n>It integrates imitation and auxiliary task learning to improve learning efficiency and generalization.<n>The framework is validated on a humanoid robot, showing a great improvement in locomotion stability on dynamic terrains.
- Score: 6.7297018009524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Achieving robust locomotion on complex terrains remains a challenge due to high dimensional control and environmental uncertainties. This paper introduces a teacher prior framework based on the teacher student paradigm, integrating imitation and auxiliary task learning to improve learning efficiency and generalization. Unlike traditional paradigms that strongly rely on encoder-based state embeddings, our framework decouples the network design, simplifying the policy network and deployment. A high performance teacher policy is first trained using privileged information to acquire generalizable motion skills. The teacher's motion distribution is transferred to the student policy, which relies only on noisy proprioceptive data, via a generative adversarial mechanism to mitigate performance degradation caused by distributional shifts. Additionally, auxiliary task learning enhances the student policy's feature representation, speeding up convergence and improving adaptability to varying terrains. The framework is validated on a humanoid robot, showing a great improvement in locomotion stability on dynamic terrains and significant reductions in development costs. This work provides a practical solution for deploying robust locomotion strategies in humanoid robots.
Related papers
- Action Flow Matching for Continual Robot Learning [57.698553219660376]
Continual learning in robotics seeks systems that can constantly adapt to changing environments and tasks.
We introduce a generative framework leveraging flow matching for online robot dynamics model alignment.
We find that by transforming the actions themselves rather than exploring with a misaligned model, the robot collects informative data more efficiently.
arXiv Detail & Related papers (2025-04-25T16:26:15Z) - Transferable Latent-to-Latent Locomotion Policy for Efficient and Versatile Motion Control of Diverse Legged Robots [9.837559106057814]
The pretrain-and-finetune paradigm offers a promising approach for efficiently adapting to new robot entities and tasks.<n>We propose a latent training framework where a transferable latent-to-latent locomotion policy is pretrained alongside diverse task-specific observation encoders and action decoders.<n>We validate our approach through extensive simulations and real-world experiments, demonstrating that the pretrained latent-to-latent locomotion policy effectively generalizes to new robot entities and tasks with improved efficiency.
arXiv Detail & Related papers (2025-03-22T03:01:25Z) - Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics [50.191655141020505]
We introduce a novel framework for learning world models.<n>By providing a scalable and robust framework, we pave the way for adaptive and efficient robotic systems in real-world applications.
arXiv Detail & Related papers (2025-01-17T10:39:09Z) - Deep Reinforcement Learning-based Obstacle Avoidance for Robot Movement in Warehouse Environments [6.061908707850057]
This paper proposes a deep reinforcement learning based on the warehouse environment, the mobile robot obstacle avoidance algorithm.
For the insufficient learning ability of the value function network in the deep reinforcement learning algorithm, the interaction information between pedestrians is extracted through the pedestrian angle grid.
The reward function of reinforcement learning is designed based on the spatial behaviour of pedestrians, and the robot is punished for the state where the angle changes too much.
arXiv Detail & Related papers (2024-09-23T12:42:35Z) - I-CTRL: Imitation to Control Humanoid Robots Through Constrained Reinforcement Learning [8.97654258232601]
We develop a framework to control humanoid robots through bounded residual reinforcement learning (I-CTRL)<n>I-CTRL excels in motion imitation with simple and unique rewards that generalize across five robots.<n>Our framework introduces an automatic priority scheduler to manage large-scale motion datasets.
arXiv Detail & Related papers (2024-05-14T16:12:27Z) - DriveAdapter: Breaking the Coupling Barrier of Perception and Planning
in End-to-End Autonomous Driving [64.57963116462757]
State-of-the-art methods usually follow the Teacher-Student' paradigm.
Student model only has access to raw sensor data and conducts behavior cloning on the data collected by the teacher model.
We propose DriveAdapter, which employs adapters with the feature alignment objective function between the student (perception) and teacher (planning) modules.
arXiv Detail & Related papers (2023-08-01T09:21:53Z) - Learning and Adapting Agile Locomotion Skills by Transferring Experience [71.8926510772552]
We propose a framework for training complex robotic skills by transferring experience from existing controllers to jumpstart learning new tasks.
We show that our method enables learning complex agile jumping behaviors, navigating to goal locations while walking on hind legs, and adapting to new environments.
arXiv Detail & Related papers (2023-04-19T17:37:54Z) - Reinforcement Learning for Robust Parameterized Locomotion Control of
Bipedal Robots [121.42930679076574]
We present a model-free reinforcement learning framework for training robust locomotion policies in simulation.
domain randomization is used to encourage the policies to learn behaviors that are robust across variations in system dynamics.
We demonstrate this on versatile walking behaviors such as tracking a target walking velocity, walking height, and turning yaw.
arXiv Detail & Related papers (2021-03-26T07:14:01Z) - Neural Dynamic Policies for End-to-End Sensorimotor Learning [51.24542903398335]
The current dominant paradigm in sensorimotor control, whether imitation or reinforcement learning, is to train policies directly in raw action spaces.
We propose Neural Dynamic Policies (NDPs) that make predictions in trajectory distribution space.
NDPs outperform the prior state-of-the-art in terms of either efficiency or performance across several robotic control tasks.
arXiv Detail & Related papers (2020-12-04T18:59:32Z) - Learning Whole-body Motor Skills for Humanoids [25.443880385966114]
This paper presents a hierarchical framework for Deep Reinforcement Learning that acquires motor skills for a variety of push recovery and balancing behaviors.
The policy is trained in a physics simulator with realistic setting of robot model and low-level impedance control that are easy to transfer the learned skills to real robots.
arXiv Detail & Related papers (2020-02-07T19:40:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.