Integrating electrocardiogram and fundus images for early detection of cardiovascular diseases
- URL: http://arxiv.org/abs/2504.10493v1
- Date: Mon, 31 Mar 2025 07:53:36 GMT
- Title: Integrating electrocardiogram and fundus images for early detection of cardiovascular diseases
- Authors: K. A. Muthukumar, Dhruva Nandi, Priya Ranjan, Krithika Ramachandran, Shiny PJ, Anirban Ghosh, Ashwini M, Aiswaryah Radhakrishnan, V. E. Dhandapani, Rajiv Janardhanan,
- Abstract summary: Cardiovascular diseases (CVD) are a predominant health concern globally, emphasizing the need for advanced diagnostic techniques.<n>We present an avant-garde methodology that synergistically integrates ECG readings and fundus images to facilitate the early disease tagging as well as triaging of the CVDs in the order of disease priority.<n>Preliminary tests yielded a commendable accuracy of 84 percent, underscoring the potential of this combined diagnostic strategy.
- Score: 1.732458484303615
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cardiovascular diseases (CVD) are a predominant health concern globally, emphasizing the need for advanced diagnostic techniques. In our research, we present an avant-garde methodology that synergistically integrates ECG readings and retinal fundus images to facilitate the early disease tagging as well as triaging of the CVDs in the order of disease priority. Recognizing the intricate vascular network of the retina as a reflection of the cardiovascular system, alongwith the dynamic cardiac insights from ECG, we sought to provide a holistic diagnostic perspective. Initially, a Fast Fourier Transform (FFT) was applied to both the ECG and fundus images, transforming the data into the frequency domain. Subsequently, the Earth Mover's Distance (EMD) was computed for the frequency-domain features of both modalities. These EMD values were then concatenated, forming a comprehensive feature set that was fed into a Neural Network classifier. This approach, leveraging the FFT's spectral insights and EMD's capability to capture nuanced data differences, offers a robust representation for CVD classification. Preliminary tests yielded a commendable accuracy of 84 percent, underscoring the potential of this combined diagnostic strategy. As we continue our research, we anticipate refining and validating the model further to enhance its clinical applicability in resource limited healthcare ecosystems prevalent across the Indian sub-continent and also the world at large.
Related papers
- AnyECG: Foundational Models for Multitask Cardiac Analysis in Real-World Settings [34.078819572852446]
Electrocardiogram (ECG) is highly sensitive in detecting acute heart attacks.<n>This paper introduces AnyECG, a foundational model designed to extract robust representations from any real-world ECG data.
arXiv Detail & Related papers (2024-11-17T17:32:58Z) - FedCVD: The First Real-World Federated Learning Benchmark on Cardiovascular Disease Data [52.55123685248105]
Cardiovascular diseases (CVDs) are currently the leading cause of death worldwide, highlighting the critical need for early diagnosis and treatment.
Machine learning (ML) methods can help diagnose CVDs early, but their performance relies on access to substantial data with high quality.
This paper presents the first real-world FL benchmark for cardiovascular disease detection, named FedCVD.
arXiv Detail & Related papers (2024-10-28T02:24:01Z) - Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction [47.7045293755736]
Early identification of patients at risk of cardiovascular diseases (CVD) is crucial for effective preventive care, reducing healthcare burden, and improving patients' quality of life.
This study demonstrates the potential of retinal optical coherence tomography ( OCT) imaging combined with fundus photographs for identifying future adverse cardiac events.
We propose a novel binary classification network based on a Multi-channel Variational Autoencoder (MCVAE), which learns a latent embedding of patients' fundus and OCT images to classify individuals into two groups: those likely to develop CVD in the future and those who are not.
arXiv Detail & Related papers (2024-10-18T12:37:51Z) - Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - Beyond the Eye: A Relational Model for Early Dementia Detection Using Retinal OCTA Images [43.73298205923969]
We present a novel PolarNet+ that uses retinal optical coherence tomography angiography ( OCTA) to discriminate early-onset Alzheimer's disease (AD) and mild cognitive impairment (MCI) subjects from controls.<n>Our method first maps OCTA images from Cartesian coordinates to polar coordinates, allowing approximate sub-region calculation.<n>We then introduce a multi-view module to serialize and analyze the images along three dimensions for comprehensive, clinically useful information extraction.
arXiv Detail & Related papers (2024-08-09T15:10:34Z) - Predicting risk of cardiovascular disease using retinal OCT imaging [40.71667870702634]
Cardiovascular diseases (CVD) are the leading cause of death globally.<n>Optical coherence tomography ( OCT) has gained recognition as a potential tool for early CVD risk prediction.<n>We investigated the potential of OCT as an additional imaging technique to predict future CVD events.
arXiv Detail & Related papers (2024-03-26T14:42:46Z) - Deciphering Heartbeat Signatures: A Vision Transformer Approach to Explainable Atrial Fibrillation Detection from ECG Signals [4.056982620027252]
We develop a vision transformer approach to identify atrial fibrillation based on single-lead ECG data.
A residual network (ResNet) approach is also developed for comparison with the vision transformer approach.
arXiv Detail & Related papers (2024-02-12T11:04:08Z) - Polar-Net: A Clinical-Friendly Model for Alzheimer's Disease Detection
in OCTA Images [53.235117594102675]
Optical Coherence Tomography Angiography is a promising tool for detecting Alzheimer's disease (AD) by imaging the retinal microvasculature.
We propose a novel deep-learning framework called Polar-Net to provide interpretable results and leverage clinical prior knowledge.
We show that Polar-Net outperforms existing state-of-the-art methods and provides more valuable pathological evidence for the association between retinal vascular changes and AD.
arXiv Detail & Related papers (2023-11-10T11:49:49Z) - Unlocking the diagnostic potential of electrocardiograms through information transfer from cardiac magnetic resonance imaging [9.77594028637426]
We present a deep learning strategy for cost-effective and comprehensive cardiac screening solely from ECG.
Our approach combines multimodal contrastive learning with masked data modelling to transfer domain-specific information from CMR imaging to ECG representations.
arXiv Detail & Related papers (2023-08-09T10:05:11Z) - Hierarchical Deep Learning with Generative Adversarial Network for
Automatic Cardiac Diagnosis from ECG Signals [2.5008947886814186]
We propose a two-level hierarchical deep learning framework with Generative Adversarial Network (GAN) for automatic diagnosis of ECG signals.
The first-level model is composed of a Memory-Augmented Deep auto-Encoder with GAN, which aims to differentiate abnormal signals from normal ECGs for anomaly detection.
The second-level learning aims at robust multi-class classification for different arrhythmias identification.
arXiv Detail & Related papers (2022-10-19T12:29:05Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Analysis of Digitalized ECG Signals Based on Artificial Intelligence and
Spectral Analysis Methods Specialized in ARVC [0.0]
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease that appears between the second and forth decade of a patient's life.
The effective and punctual diagnosis of this disease based on Electrocardiograms (ECGs) could have a vital role in reducing premature cardiovascular mortality.
arXiv Detail & Related papers (2022-02-28T13:12:50Z) - ECG Heartbeat Classification Using Multimodal Fusion [13.524306011331303]
We propose two computationally efficient multimodal fusion frameworks for ECG heart beat classification.
In MFF, we extracted features from penultimate layer of CNNs and fused them to get unique and interdependent information.
We achieved classification accuracy of 99.7% and 99.2% on arrhythmia and MI classification, respectively.
arXiv Detail & Related papers (2021-07-21T03:48:35Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.