論文の概要: Explainable Artificial Intelligence techniques for interpretation of food datasets: a review
- arxiv url: http://arxiv.org/abs/2504.10527v1
- Date: Sat, 12 Apr 2025 11:10:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:12:08.254836
- Title: Explainable Artificial Intelligence techniques for interpretation of food datasets: a review
- Title(参考訳): 食品データセットの解釈のための説明可能な人工知能技術:レビュー
- Authors: Leonardo Arrighi, Ingrid Alves de Moraes, Marco Zullich, Michele Simonato, Douglas Fernandes Barbin, Sylvio Barbon Junior,
- Abstract要約: XAIは依然として食品工学において未利用であり、モデルの信頼性を制限している。
SHAPやGrad-CAMといったXAI技術は、どのスペクトル波長や画像領域が予測に最も寄与するかを特定できる。
本調査は,XAI技術を用いた食品品質研究の分類法を提案する。
- 参考スコア(独自算出の注目度): 1.593353228010434
- License:
- Abstract: Artificial Intelligence (AI) has become essential for analyzing complex data and solving highly-challenging tasks. It is being applied across numerous disciplines beyond computer science, including Food Engineering, where there is a growing demand for accurate and trustworthy predictions to meet stringent food quality standards. However, this requires increasingly complex AI models, raising reliability concerns. In response, eXplainable AI (XAI) has emerged to provide insights into AI decision-making, aiding model interpretation by developers and users. Nevertheless, XAI remains underutilized in Food Engineering, limiting model reliability. For instance, in food quality control, AI models using spectral imaging can detect contaminants or assess freshness levels, but their opaque decision-making process hinders adoption. XAI techniques such as SHAP (Shapley Additive Explanations) and Grad-CAM (Gradient-weighted Class Activation Mapping) can pinpoint which spectral wavelengths or image regions contribute most to a prediction, enhancing transparency and aiding quality control inspectors in verifying AI-generated assessments. This survey presents a taxonomy for classifying food quality research using XAI techniques, organized by data types and explanation methods, to guide researchers in choosing suitable approaches. We also highlight trends, challenges, and opportunities to encourage the adoption of XAI in Food Engineering.
- Abstract(参考訳): 人工知能(AI)は、複雑なデータを分析し、高度に混在するタスクを解決するために欠かせないものとなっている。
食品工学を含むコンピュータ科学以外の多くの分野に適用されており、食品品質基準を満たすための正確で信頼性の高い予測に対する需要が高まっている。
しかし、これはますます複雑なAIモデルを必要とし、信頼性の懸念が高まる。
これに応えて、eXplainable AI (XAI)は、開発者とユーザによるモデル解釈を支援するAI意思決定に関する洞察を提供するために登場した。
それでも、XAIは食品工学において未使用のままであり、モデルの信頼性を制限している。
例えば、食品の品質管理では、スペクトル画像を用いたAIモデルは汚染物質を検出したり、新鮮度レベルを評価することができるが、不透明な意思決定プロセスは採用を妨げる。
SHAP(Shapley Additive Explanations)やGrad-CAM(Gradient-weighted Class Activation Mapping)といったXAI技術は、どのスペクトル波長や画像領域が予測に最も寄与しているかを特定し、透明性を高め、AI生成した評価を検証する品質管理インスペクタを支援する。
本研究は,データ型と説明手法によって編成されたXAI技術を用いて,食品品質研究を分類し,研究者が適切なアプローチを選択するための指導を行うための分類法である。
また、食品工学におけるXAIの採用を促進するためのトレンド、課題、機会も強調する。
関連論文リスト
- Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
計算安全性は、GenAIにおける安全性の定量的評価、定式化、研究を可能にする数学的枠組みである。
ジェイルブレイクによる悪意のあるプロンプトを検出するために, 感度解析と損失景観解析がいかに有効かを示す。
我々は、AIの安全性における信号処理の鍵となる研究課題、機会、そして重要な役割について論じる。
論文 参考訳(メタデータ) (2025-02-18T02:26:50Z) - Generative Artificial Intelligence Meets Synthetic Aperture Radar: A Survey [49.29751866761522]
本稿では,GenAIとSARの交差点について検討する。
まず、SAR分野における一般的なデータ生成ベースのアプリケーションについて説明する。
次に、最新のGenAIモデルの概要を体系的にレビューする。
最後に、SARドメインの対応するアプリケーションも含まれる。
論文 参考訳(メタデータ) (2024-11-05T03:06:00Z) - Explainable Artificial Intelligence: A Survey of Needs, Techniques, Applications, and Future Direction [5.417632175667161]
説明可能な人工知能(XAI)は、これらのモデルがどのように意思決定や予測を行うかを説明することによって、課題に対処する。
既存の研究では、XAIの基本概念、その一般的原理、およびXAI技術の範囲について検討されている。
本稿では、共通用語と定義、XAIの必要性、XAIの受益者の必要性、XAI手法の分類、および異なる応用分野におけるXAI手法の適用に関する総合的な文献レビューを提供する。
論文 参考訳(メタデータ) (2024-08-30T21:42:17Z) - XEdgeAI: A Human-centered Industrial Inspection Framework with Data-centric Explainable Edge AI Approach [2.0209172586699173]
本稿では,新しいXAI統合視覚品質検査フレームワークを提案する。
我々のフレームワークはXAIとLarge Vision Language Modelを組み込んで人間中心の解釈可能性を提供する。
このアプローチは、重要な産業アプリケーションに信頼性と解釈可能なAIツールを広く採用する道を開くものだ。
論文 参考訳(メタデータ) (2024-07-16T14:30:24Z) - Applications of Explainable artificial intelligence in Earth system science [12.454478986296152]
このレビューは、説明可能なAI(XAI)の基礎的な理解を提供することを目的としている。
XAIはモデルをより透明にする強力なツールセットを提供する。
我々は、地球系科学(ESS)において、XAIが直面する4つの重要な課題を識別する。
AIモデルは未知を探索し、XAIは説明を提供することでギャップを埋める。
論文 参考訳(メタデータ) (2024-06-12T15:05:29Z) - Explainable Artificial Intelligence Techniques for Accurate Fault Detection and Diagnosis: A Review [0.0]
この文脈でeXplainable AI(XAI)ツールとテクニックをレビューする。
私たちは、AI決定を透明にする彼らの役割、特に人間が関与する重要なシナリオに重点を置いています。
モデル性能と説明可能性のバランスをとることを目的とした,現在の限界と今後の研究について論じる。
論文 参考訳(メタデータ) (2024-04-17T17:49:38Z) - Gradient based Feature Attribution in Explainable AI: A Technical Review [13.848675695545909]
ブラックボックスAIモデルの急増は、内部メカニズムを説明し、信頼性を正当化する必要性を喚起している。
勾配に基づく説明は、ニューラルネットワークモデルに直接適用することができる。
アルゴリズムの性能を測定するために,人的評価と定量的評価の両方を導入する。
論文 参考訳(メタデータ) (2024-03-15T15:49:31Z) - Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
本研究では、ログ異常の分類を導入し、ラベル付けの課題を軽減するために、自動ラベリングについて検討する。
この研究は、根本原因分析が異常検出に続く未来を予見し、異常の根本原因を解明する。
論文 参考訳(メタデータ) (2023-12-22T15:04:20Z) - Predictable Artificial Intelligence [77.1127726638209]
本稿では予測可能なAIのアイデアと課題を紹介する。
それは、現在および将来のAIエコシステムの重要な妥当性指標を予測できる方法を探る。
予測可能性を達成することは、AIエコシステムの信頼、責任、コントロール、アライメント、安全性を促進するために不可欠である、と私たちは主張する。
論文 参考訳(メタデータ) (2023-10-09T21:36:21Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
生成AIは、現実世界の写真によく似た合成画像を作成する可能性を解き放った。
本稿では、これらのAI生成画像を新しいデータソースとして活用するという革新的な概念を探求する。
実際のデータとは対照的に、AI生成データには、未整合のアブリダンスやスケーラビリティなど、大きなメリットがある。
論文 参考訳(メタデータ) (2023-10-03T06:55:19Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。