論文の概要: Explainable Artificial Intelligence Techniques for Accurate Fault Detection and Diagnosis: A Review
- arxiv url: http://arxiv.org/abs/2404.11597v2
- Date: Mon, 10 Jun 2024 17:04:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 00:24:28.959479
- Title: Explainable Artificial Intelligence Techniques for Accurate Fault Detection and Diagnosis: A Review
- Title(参考訳): 正確な故障検出・診断のための説明可能な人工知能技術
- Authors: Ahmed Maged, Salah Haridy, Herman Shen,
- Abstract要約: この文脈でeXplainable AI(XAI)ツールとテクニックをレビューする。
私たちは、AI決定を透明にする彼らの役割、特に人間が関与する重要なシナリオに重点を置いています。
モデル性能と説明可能性のバランスをとることを目的とした,現在の限界と今後の研究について論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the manufacturing industry advances with sensor integration and automation, the opaque nature of deep learning models in machine learning poses a significant challenge for fault detection and diagnosis. And despite the related predictive insights Artificial Intelligence (AI) can deliver, advanced machine learning engines often remain a black box. This paper reviews the eXplainable AI (XAI) tools and techniques in this context. We explore various XAI methodologies, focusing on their role in making AI decision-making transparent, particularly in critical scenarios where humans are involved. We also discuss current limitations and potential future research that aims to balance explainability with model performance while improving trustworthiness in the context of AI applications for critical industrial use cases.
- Abstract(参考訳): 製造業がセンサーの統合と自動化で進歩するにつれ、機械学習におけるディープラーニングモデルの不透明な性質は、障害検出と診断において重要な課題となっている。
そして、人工知能(AI)がもたらす予測的な洞察にもかかわらず、先進的な機械学習エンジンはブラックボックスのままであることが多い。
本稿では、この文脈におけるeXplainable AI(XAI)ツールとテクニックについてレビューする。
我々は、AI決定を透明にする役割、特に人間が関与する重要なシナリオに焦点をあて、様々なXAI方法論を探求する。
また、重要な産業ユースケースにおけるAIアプリケーションのコンテキストにおける信頼性を改善しながら、モデルパフォーマンスと説明可能性のバランスをとることを目的とした、現在の制限と将来の研究についても論じる。
関連論文リスト
- Adaptation of XAI to Auto-tuning for Numerical Libraries [0.0]
説明可能なAI(XAI)技術は、AIモデル開発の合理化と、ユーザへのAI出力の説明の負担軽減を目的として、注目を集めている。
本研究は,2つの異なるプロセスに統合されたAIモデルのXAIに着目し,数値計算を行う。
論文 参考訳(メタデータ) (2024-05-12T09:00:56Z) - Towards a general framework for improving the performance of classifiers using XAI methods [0.0]
本稿では,XAI手法を用いた事前学習型ディープラーニング(DL)分類器の性能向上のためのフレームワークを提案する。
オートエンコーダベースおよびエンコーダデコーダベースと呼び、それらの重要な側面について議論する。
論文 参考訳(メタデータ) (2024-03-15T15:04:20Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
IT運用のための人工知能(AIOps)は、AIのパワーとIT運用プロセスが生成するビッグデータを組み合わせることを目的としている。
我々は、IT運用活動が発信する重要なデータの種類、分析における規模と課題、そしてどのように役立つかについて深く議論する。
主要なAIOpsタスクは、インシデント検出、障害予測、根本原因分析、自動アクションに分類します。
論文 参考訳(メタデータ) (2023-04-10T15:38:12Z) - Evaluating explainability for machine learning predictions using
model-agnostic metrics [0.0]
本稿では,その特徴からAIモデル予測が容易に説明できる程度を定量化する新しい指標を提案する。
我々のメトリクスは、説明可能性の異なる側面をスカラーに要約し、モデル予測のより包括的な理解を提供する。
論文 参考訳(メタデータ) (2023-02-23T15:28:36Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - A Time Series Approach to Explainability for Neural Nets with
Applications to Risk-Management and Fraud Detection [0.0]
技術に対する信頼は、予測の背後にある根拠を理解することによって実現される。
横断的なデータの場合、古典的なXAIアプローチはモデルの内部動作に関する貴重な洞察をもたらす可能性がある。
本稿では、データの自然時間順序を保存・活用する深層学習のための新しいXAI手法を提案する。
論文 参考訳(メタデータ) (2022-12-06T12:04:01Z) - Vision Paper: Causal Inference for Interpretable and Robust Machine
Learning in Mobility Analysis [71.2468615993246]
インテリジェントな輸送システムを構築するには、人工知能とモビリティ分析の複雑な組み合わせが必要である。
ここ数年、高度なディープニューラルネットワークを使った輸送アプリケーションの開発が急速に進んでいる。
このビジョンペーパーは、解釈可能性と堅牢性を必要とするディープラーニングに基づくモビリティ分析における研究課題を強調する。
論文 参考訳(メタデータ) (2022-10-18T17:28:58Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
モデル駆動型ソフトウェアエンジニアリングとモデル駆動型AIエンジニアリングを実現するための新しいアプローチを提案する。
特に、私たちはAutomated MLをサポートし、AI集約システムの開発において、AIの深い知識のないソフトウェアエンジニアを支援します。
論文 参考訳(メタデータ) (2022-03-06T10:12:56Z) - A Review of Explainable Artificial Intelligence in Manufacturing [0.8793721044482613]
製造領域における人工知能(AI)システムの実装は、高い生産効率、優れた性能、より安全な運用を可能にする。
これらのモデルの精度が高いにもかかわらず、それらは主にブラックボックスと考えられており、人間には理解できない。
本稿では,モデルの透明性を高める手段として,説明可能な人工知能(XAI)技術の概要を紹介する。
論文 参考訳(メタデータ) (2021-07-05T21:59:55Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。