Restoring the second law to classical-quantum dynamics
- URL: http://arxiv.org/abs/2504.10587v1
- Date: Mon, 14 Apr 2025 18:00:04 GMT
- Title: Restoring the second law to classical-quantum dynamics
- Authors: Isaac Layton, Harry J. D. Miller,
- Abstract summary: We study classical-quantum dynamics that are linear and completely-positive.<n>We show how these dynamics may be constructed.<n>We numerically demonstrate thermalisation in the adiabatic basis.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: All physical theories should obey the second law of thermodynamics. However, existing proposals to describe the dynamics of hybrid classical-quantum systems either violate the second law or lack a proof of its existence. Here we rectify this by studying classical-quantum dynamics that are (1) linear and completely-positive and (2) preserve the thermal state of the classical-quantum system. We first prove that such dynamics necessarily satisfy the second law. We then show how these dynamics may be constructed, proposing dynamics that generalise the standard Langevin and Fokker-Planck equations for classical systems in thermal environments to include back-reaction from a quantum degree of freedom. Deriving necessary and sufficient conditions for completely-positive, linear and continuous classical-quantum dynamics to satisfy detailed balance, we find this property satisfied by our dynamics. To illustrate the formalism and its applications we introduce two models. The first is an analytically solvable model of an overdamped classical system coupled to a quantum two-level system, which we use to study the total entropy production in both quantum system and classical measurement apparatus during a quantum measurement. The second describes an underdamped classical-quantum oscillator system subject to friction, which we numerically demonstrate exhibits thermalisation in the adiabatic basis, showing the relevance of our dynamics for the mixed classical-quantum simulation of molecules.
Related papers
- Operationally classical simulation of quantum states [41.94295877935867]
A classical state-preparation device cannot generate superpositions and hence its emitted states must commute.<n>We show that no such simulation exists, thereby certifying quantum coherence.<n>Our approach is a possible avenue to understand how and to what extent quantum states defy generic models based on classical devices.
arXiv Detail & Related papers (2025-02-03T15:25:03Z) - Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement [42.896772730859645]
We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations.
We apply this approach to the classic logistic and Lorenz systems in both integrable and chaotic regimes.
arXiv Detail & Related papers (2024-10-04T18:06:12Z) - Quantum Principle of Least Action in Dynamic Theories With Higher Derivatives [44.99833362998488]
This form is the initial point for the construction of quantum theory.
The correspondence between the new form of quantum theory and "ordinary" quantum mechanics has been established in the local limit.
arXiv Detail & Related papers (2024-04-15T09:29:58Z) - Markovian dynamics for a quantum/classical system and quantum trajectories [0.0]
We develop a general approach to the dynamics of quantum/classical systems.
An important feature is that, if the interaction allows for a flow of information from the quantum component to the classical one, necessarily the dynamics is dissipative.
arXiv Detail & Related papers (2024-03-24T08:26:54Z) - Motivating semiclassical gravity: a classical-quantum approximation for
bipartite quantum systems [0.0]
We derive a "classical-quantum" approximation scheme for a broad class of bipartite quantum systems.
In this approximation, one subsystem evolves via classical equations of motion with quantum corrections, and the other subsystem evolves quantum mechanically.
arXiv Detail & Related papers (2023-06-01T18:05:33Z) - A healthier semi-classical dynamics [0.0]
We study the back-reaction of quantum systems onto classical ones.<n>We take the starting point that semi-classical physics should be described at all times by a point in classical phase space and a quantum state in Hilbert space.
arXiv Detail & Related papers (2022-08-24T18:04:14Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Quantum simulation of non-equilibrium dynamics and thermalization in the
Schwinger model [0.0]
We present simulations of non-equilibrium dynamics of quantum field theories on digital quantum computers.
We consider the Schwinger model, a 1+1 dimensional U(1) gauge theory, coupled through a Yukawa-type interaction to a thermal environment.
arXiv Detail & Related papers (2021-06-15T19:48:05Z) - Objective trajectories in hybrid classical-quantum dynamics [0.0]
We introduce several toy models in which to study hybrid classical-quantum evolution.
We present an unravelling approach to calculate the dynamics, and provide code to numerically simulate it.
arXiv Detail & Related papers (2020-11-11T19:00:34Z) - Semi-classical quantisation of magnetic solitons in the anisotropic
Heisenberg quantum chain [21.24186888129542]
We study the structure of semi-classical eigenstates in a weakly-anisotropic quantum Heisenberg spin chain.
Special emphasis is devoted to the simplest types of solutions, describing precessional motion and elliptic magnetisation waves.
arXiv Detail & Related papers (2020-10-14T16:46:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.