Lattice Surgery Compilation Beyond the Surface Code
- URL: http://arxiv.org/abs/2504.10591v1
- Date: Mon, 14 Apr 2025 18:00:06 GMT
- Title: Lattice Surgery Compilation Beyond the Surface Code
- Authors: Laura S. Herzog, Lucas Berent, Aleksander Kubica, Robert Wille,
- Abstract summary: We consider lattice surgery compilation for topological codes beyond the surface code.<n>We explore specific substrates and codes, including the color code and the folded surface code.<n>For the color code, we present numerical simulations analyzing how design choices at the microscopic and macroscopic levels affect the depth of compiled logical $mathrmCNOT+mathrmT$ circuits.
- Score: 44.47912078290474
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-scale fault-tolerant quantum computation requires compiling logical circuits into physical operations tailored to a given architecture. Prior work addressing this challenge has mostly focused on the surface code and lattice surgery schemes. In this work, we broaden the scope by considering lattice surgery compilation for topological codes beyond the surface code. We begin by defining a code substrate - a blueprint for implementing topological codes and lattice surgery. We then abstract from the microscopic details and rephrase the compilation task as a mapping and routing problem on a macroscopic routing graph, potentially subject to substrate-specific constraints. We explore specific substrates and codes, including the color code and the folded surface code, providing detailed microscopic constructions. For the color code, we present numerical simulations analyzing how design choices at the microscopic and macroscopic levels affect the depth of compiled logical $\mathrm{CNOT}+\mathrm{T}$ circuits. An open-source code is available on GitHub https://github.com/cda-tum/mqt-qecc.
Related papers
- Wire Codes [0.0]
We introduce a recipe to transform any quantum stabilizer code into a subsystem code with related code parameters that has weight and degree three.
We call the subsystem codes produced by our recipe "wire codes"
Our results constitute a general method to construct low-overhead subsystem codes on general graphs.
arXiv Detail & Related papers (2024-10-14T06:27:09Z) - Flag Proxy Networks: Tackling the Architectural, Scheduling, and Decoding Obstacles of Quantum LDPC codes [1.870400753080051]
In this paper, we consider two under-studied families of QLDPC codes: hyperbolic surface codes and hyperbolic color codes.
degree-4 FPNs of the hyperbolic surface and color codes are respectively $2.9times$ and $5.5times$ more space-efficient than the $d = 5$ planar surface code.
The hyperbolic codes also have error rates comparable to their planar counterparts.
arXiv Detail & Related papers (2024-09-22T01:08:58Z) - SSIP: automated surgery with quantum LDPC codes [55.2480439325792]
We present Safe Surgery by Identifying Pushouts (SSIP), an open-source lightweight Python package for automating surgery between qubit CSS codes.
Under the hood, it performs linear algebra over $mathbbF$ governed by universal constructions in the category of chain complexes.
We show that various logical measurements can be performed cheaply by surgery without sacrificing the high code distance.
arXiv Detail & Related papers (2024-07-12T16:50:01Z) - Equivalence Classes of Quantum Error-Correcting Codes [49.436750507696225]
Quantum error-correcting codes (QECC's) are needed to combat the inherent noise affecting quantum processes.
We represent QECC's in a form called a ZX diagram, consisting of a tensor network.
arXiv Detail & Related papers (2024-06-17T20:48:43Z) - Geometrically Local Quantum and Classical Codes from Subdivision [10.357542321841887]
A geometrically local quantum code is an error correcting code situated within $mathbbRD$, where the checks only act on qubits within a fixed spatial distance.
Recently, Portnoy made a significant breakthrough with codes achieving optimal dimension and distance up to polylogs.
This paper bypasses this step and streamlines the construction by noticing that a family of good quantum low-density parity-check codes, balanced product codes, naturally carries a two-dimensional structure.
arXiv Detail & Related papers (2023-09-28T02:12:38Z) - A High Performance Compiler for Very Large Scale Surface Code Computations [38.26470870650882]
We present the first high performance compiler for very large scale quantum error correction.
It translates an arbitrary quantum circuit to surface code operations based on lattice surgery.
The compiler can process millions of gates using a streaming pipeline at a speed geared towards real-time operation of a physical device.
arXiv Detail & Related papers (2023-02-05T19:06:49Z) - CSS code surgery as a universal construction [51.63482609748332]
We define code maps between Calderbank-Shor-Steane (CSS) codes using maps between chain complexes.
We describe code surgery between such codes using a specific colimit in the category of chain complexes.
arXiv Detail & Related papers (2023-01-31T16:17:25Z) - Space-time optimized table lookup [3.961270923919885]
We describe a space-time optimized circuit for the table lookup subroutine from lattice-surgery surface code primitives respecting 2D grid connectivity.
Table lookup circuits are ubiquitous in quantum computing, allowing the presented circuit to be used for applications ranging from cryptography to quantum chemistry.
arXiv Detail & Related papers (2022-11-02T14:10:40Z) - Morphing quantum codes [77.34726150561087]
We morph the 15-qubit Reed-Muller code to obtain the smallest known stabilizer code with a fault-tolerant logical $T$ gate.
We construct a family of hybrid color-toric codes by morphing the color code.
arXiv Detail & Related papers (2021-12-02T17:43:00Z) - Quantum Lego: Building Quantum Error Correction Codes from Tensor
Networks [0.0]
We represent complex code constructions as tensor networks built from the tensors of simple codes or states.
The framework endows a network geometry to any code it builds and is valid for constructing stabilizer codes.
We lay out some examples where we glue together simple stabilizer codes to construct non-trivial codes.
arXiv Detail & Related papers (2021-09-16T18:00:00Z) - COSEA: Convolutional Code Search with Layer-wise Attention [90.35777733464354]
We propose a new deep learning architecture, COSEA, which leverages convolutional neural networks with layer-wise attention to capture the code's intrinsic structural logic.
COSEA can achieve significant improvements over state-of-the-art methods on code search tasks.
arXiv Detail & Related papers (2020-10-19T13:53:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.