Flag Proxy Networks: Tackling the Architectural, Scheduling, and Decoding Obstacles of Quantum LDPC codes
- URL: http://arxiv.org/abs/2409.14283v1
- Date: Sun, 22 Sep 2024 01:08:58 GMT
- Title: Flag Proxy Networks: Tackling the Architectural, Scheduling, and Decoding Obstacles of Quantum LDPC codes
- Authors: Suhas Vittal, Ali Javadi-Abhari, Andrew W. Cross, Lev S. Bishop, Moinuddin Qureshi,
- Abstract summary: In this paper, we consider two under-studied families of QLDPC codes: hyperbolic surface codes and hyperbolic color codes.
degree-4 FPNs of the hyperbolic surface and color codes are respectively $2.9times$ and $5.5times$ more space-efficient than the $d = 5$ planar surface code.
The hyperbolic codes also have error rates comparable to their planar counterparts.
- Score: 1.870400753080051
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum error correction is necessary for achieving exponential speedups on important applications. The planar surface code has remained the most studied error-correcting code for the last two decades because of its relative simplicity. However, encoding a singular logical qubit with the planar surface code requires physical qubits quadratic in the code distance~($d$), making it space-inefficient for the large-distance codes necessary for promising applications. Thus, {\em Quantum Low-Density Parity-Check (QLDPC)} have emerged as an alternative to the planar surface code but require a higher degree of connectivity. Furthermore, the problems of fault-tolerant syndrome extraction and decoding are understudied for these codes and also remain obstacles to their usage. In this paper, we consider two under-studied families of QLDPC codes: hyperbolic surface codes and hyperbolic color codes. We tackle the three challenges mentioned above as follows. {\em First}, we propose {\em Flag-Proxy Networks (FPNs)}, a generalizable architecture for quantum codes that achieves low connectivity through flag and proxy qubits. {\em Second}, we propose a {\em greedy syndrome extraction scheduling} algorithm for general quantum codes and further use this algorithm for fault-tolerant syndrome extraction on FPNs. {\em Third}, we present two decoders that leverage flag measurements to decode the hyperbolic codes accurately. Our work finds that degree-4 FPNs of the hyperbolic surface and color codes are respectively $2.9\times$ and $5.5\times$ more space-efficient than the $d = 5$ planar surface code, and become even more space-efficient when considering higher distances. The hyperbolic codes also have error rates comparable to their planar counterparts.
Related papers
- Decoding Quasi-Cyclic Quantum LDPC Codes [23.22566380210149]
Quantum low-density parity-check (qLDPC) codes are an important component in the quest for fault tolerance.
Recent progress on qLDPC codes has led to constructions which are quantumally good, and which admit linear-time decoders to correct errors affecting a constant fraction of codeword qubits.
In practice, the surface/toric codes, which are the product of two repetition codes, are still often the qLDPC codes of choice.
arXiv Detail & Related papers (2024-11-07T06:25:27Z) - List Decodable Quantum LDPC Codes [49.2205789216734]
We give a construction of Quantum Low-Density Parity Check (QLDPC) codes with near-optimal rate-distance tradeoff.
We get efficiently list decodable QLDPC codes with unique decoders.
arXiv Detail & Related papers (2024-11-06T23:08:55Z) - Wire Codes [0.0]
We introduce a recipe to transform any quantum stabilizer code into a subsystem code with related code parameters that has weight and degree three.
We call the subsystem codes produced by our recipe "wire codes"
Our results constitute a general method to construct low-overhead subsystem codes on general graphs.
arXiv Detail & Related papers (2024-10-14T06:27:09Z) - SSIP: automated surgery with quantum LDPC codes [55.2480439325792]
We present Safe Surgery by Identifying Pushouts (SSIP), an open-source lightweight Python package for automating surgery between qubit CSS codes.
Under the hood, it performs linear algebra over $mathbbF$ governed by universal constructions in the category of chain complexes.
We show that various logical measurements can be performed cheaply by surgery without sacrificing the high code distance.
arXiv Detail & Related papers (2024-07-12T16:50:01Z) - Progressive-Proximity Bit-Flipping for Decoding Surface Codes [8.971989179518214]
Topological quantum codes, such as toric and surface codes, are excellent candidates for hardware implementation.
Existing decoders often fall short of meeting requirements such as having low computational complexity.
We propose a novel bit-flipping (BF) decoder tailored for toric and surface codes.
arXiv Detail & Related papers (2024-02-24T22:38:05Z) - Long-range-enhanced surface codes [0.0]
The surface code is a quantum error-correcting code for one logical qubit, protected by spatially localized parity checks in two dimensions.
We show that storing more logical qubits requires either sacrificing the robustness of the surface code against errors or increasing the number of physical qubits.
Long-range-enhanced surface codes outperform conventional surface codes using hundreds of physical qubits, and represent a practical strategy to enhance the robustness of logical qubits to errors in near-term devices.
arXiv Detail & Related papers (2023-09-21T01:39:31Z) - Hierarchical memories: Simulating quantum LDPC codes with local gates [0.05156484100374058]
Constant-rate low-density parity-check (LDPC) codes are promising candidates for constructing efficient fault-tolerant quantum memories.
We construct a new family of hierarchical codes, that encode a number of logical qubits K = Omega(N/log(N)2.
Under conservative assumptions, we find that the hierarchical code outperforms the basic encoding where all logical qubits are encoded in the surface code.
arXiv Detail & Related papers (2023-03-08T18:48:12Z) - Quantum computation on a 19-qubit wide 2d nearest neighbour qubit array [59.24209911146749]
This paper explores the relationship between the width of a qubit lattice constrained in one dimension and physical thresholds.
We engineer an error bias at the lowest level of encoding using the surface code.
We then address this bias at a higher level of encoding using a lattice-surgery surface code bus.
arXiv Detail & Related papers (2022-12-03T06:16:07Z) - Tailored XZZX codes for biased noise [60.12487959001671]
We study a family of codes having XZZX-type stabilizer generators.
We show that these XZZX codes are highly qubit efficient if tailored to biased noise.
arXiv Detail & Related papers (2022-03-30T17:26:31Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Morphing quantum codes [77.34726150561087]
We morph the 15-qubit Reed-Muller code to obtain the smallest known stabilizer code with a fault-tolerant logical $T$ gate.
We construct a family of hybrid color-toric codes by morphing the color code.
arXiv Detail & Related papers (2021-12-02T17:43:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.