論文の概要: LITERA: An LLM Based Approach to Latin-to-English Translation
- arxiv url: http://arxiv.org/abs/2504.10660v1
- Date: Mon, 14 Apr 2025 19:21:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:11:59.717129
- Title: LITERA: An LLM Based Approach to Latin-to-English Translation
- Title(参考訳): LITERA:ラテン・英語翻訳へのLLMベースのアプローチ
- Authors: Paul Rosu,
- Abstract要約: 本稿では,ラテン文字翻訳の課題に対処するために,LLMをベースとしたラテン-英語翻訳プラットフォームを提案する。
LITERAはラテン語の解釈と翻訳を英語に翻訳し、研究支援を行うためのモデルである。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper introduces an LLM-based Latin-to-English translation platform designed to address the challenges of translating Latin texts. We named the model LITERA, which stands for Latin Interpretation and Translations into English for Research Assistance. Through a multi-layered translation process utilizing a fine-tuned version of GPT-4o-mini and GPT-4o, LITERA offers an unprecedented level of accuracy, showcased by greatly improved BLEU scores, particularly in classical Latin, along with improved BLEURT scores. The development of LITERA involved close collaboration with Duke University's Classical Studies Department, which was instrumental in creating a small, high-quality parallel Latin-English dataset. This paper details the architecture, fine-tuning methodology, and prompting strategies used in LITERA, emphasizing its ability to produce literal translations.
- Abstract(参考訳): 本稿では,ラテン文字翻訳の課題に対処するために,LLMをベースとしたラテン-英語翻訳プラットフォームを提案する。
我々は、ラテン語の解釈と英訳を意味するLITERAを研究支援のために命名した。
GPT-4o-miniとGPT-4oを微調整した多層翻訳プロセスを通じて、LITERAは前例のないレベルの精度を提供する。
LITERAの開発はデューク大学の古典研究部門と密接に協力し、小型で高品質のラテン英語の並列データセットを作成するのに役立った。
本稿では, LITERA のアーキテクチャ, 微調整手法, および LITERA で使用される戦略を詳述し, リテラル翻訳の能力を強調した。
関連論文リスト
- Speech Translation Refinement using Large Language Models [8.602429274223693]
本稿では,大規模言語モデル(LLM)が,共同改良プロセスを導入することにより,音声翻訳の性能を向上する方法について検討する。
LLMによる音声翻訳(ST)と自動音声認識(ASR)の併用により,STモデルの性能は大幅に向上した。
7つの翻訳タスクを含む MuST-C と CoVoST 2 データセットの実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2025-01-25T05:32:42Z) - Prompting with Phonemes: Enhancing LLMs' Multilinguality for Non-Latin Script Languages [37.61699757912346]
そこで本研究では,音声の書き起こしを補完信号として活用し,スクリプト不変表現を誘導する手法を提案する。
In-context Learning (ICL) における音素文字と正書法文字がそれぞれ異なる例を検索することを示す。
これにより、提案したMixed-ICL検索戦略のモチベーションが得られ、両者のさらなる集約により性能が大幅に向上する。
論文 参考訳(メタデータ) (2024-11-04T18:59:51Z) - LLM-based Translation Inference with Iterative Bilingual Understanding [52.46978502902928]
大規模言語モデル(LLM)の言語間機能に基づいた,新しい反復的バイリンガル理解翻訳法を提案する。
LLMの言語横断的能力により、ソース言語とターゲット言語を別々にコンテキスト理解することが可能になる。
提案したIBUTは、いくつかの強力な比較法より優れている。
論文 参考訳(メタデータ) (2024-10-16T13:21:46Z) - Large Language Models for Classical Chinese Poetry Translation: Benchmarking, Evaluating, and Improving [43.148203559785095]
印象的な多言語機能を持つ大規模言語モデル(LLM)は、この極端な翻訳要求を達成するための希望の光となるかもしれない。
本稿ではまず,各漢詩にエレガントな翻訳が認められた適切なベンチマーク(PoetMT)を紹介する。
本稿では,GPT-4に基づく新しい測定基準を提案し,現在のLCMがこれらの要求を満たす範囲を評価する。
論文 参考訳(メタデータ) (2024-08-19T12:34:31Z) - Efficiently Exploring Large Language Models for Document-Level Machine Translation with In-context Learning [38.89119606657543]
文レベルの翻訳とは対照的に、文脈内学習に基づく大規模言語モデル(LLM)による文書レベルの翻訳(DOCMT)は2つの大きな課題に直面している。
本研究では,文脈認識型プロンプト法(CAP)を提案する。
様々なDOCMTタスクに対して広範な実験を行い,本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-06-11T09:11:17Z) - (Perhaps) Beyond Human Translation: Harnessing Multi-Agent Collaboration for Translating Ultra-Long Literary Texts [52.18246881218829]
本稿では,大言語モデル(LLM)をベースとした多エージェントフレームワークを,TransAgentsという企業として実装した。
本システムの有効性を評価するため,モノリンガル・ヒューマン・プライス(MHP)とバイリンガル・LLM・プライス(BLP)の2つの革新的な評価戦略を提案する。
論文 参考訳(メタデータ) (2024-05-20T05:55:08Z) - Building Accurate Translation-Tailored LLMs with Language Aware Instruction Tuning [57.323716555996114]
オフターゲット翻訳は、特に低リソース言語では未解決の問題である。
最近の研究は、翻訳命令の機能を強調するために高度なプロンプト戦略を設計するか、LLMの文脈内学習能力を活用している。
本研究では,LLMの命令追従能力(特に翻訳方向)を向上させるために,2段階の微調整アルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-03-21T13:47:40Z) - Speech Translation with Large Language Models: An Industrial Practice [64.5419534101104]
LLM-STは,事前学習型大言語モデル(LLM)に基づいて構築された,新規で効果的な音声翻訳モデルである。
大規模言語モデル(LLM)を音声エンコーダと統合し、マルチタスクの命令チューニングを利用することで、LLM-STは正確なタイムスタンプと翻訳を生成することができる。
英語と中国語のデータセットの厳密な実験を通じて,LLM-STの異常な性能を示す。
論文 参考訳(メタデータ) (2023-12-21T05:32:49Z) - SCALE: Synergized Collaboration of Asymmetric Language Translation
Engines [105.8983433641208]
本稿では,コンパクトな特殊翻訳モデル (STM) と汎用大言語モデル (LLM) を1つの統合翻訳エンジンとして結合する協調フレームワークを提案する。
STMからの翻訳を3重項インコンテキストのデモに導入することで、SCALEはLLMの洗練とピボット能力を解放する。
実験の結果,SCALEは低リソース環境において,少数ショットLLM (GPT-4) と特殊モデル (NLLB) の両方を著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2023-09-29T08:46:38Z) - Romanization-based Large-scale Adaptation of Multilingual Language
Models [124.57923286144515]
大規模多言語事前学習言語モデル (mPLMs) は,NLPにおける多言語間移動のデファクトステートとなっている。
我々は、mPLMをローマン化および非ロマン化した14の低リソース言語コーパスに適用するためのデータとパラメータ効率の戦略を多数検討し、比較した。
以上の結果から, UROMAN をベースとしたトランスリテラルは,多くの言語で高い性能を達成できることがわかった。
論文 参考訳(メタデータ) (2023-04-18T09:58:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。