論文の概要: Optimising Intrusion Detection Systems in Cloud-Edge Continuum with Knowledge Distillation for Privacy-Preserving and Efficient Communication
- arxiv url: http://arxiv.org/abs/2504.10698v1
- Date: Mon, 14 Apr 2025 20:45:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:05:24.858218
- Title: Optimising Intrusion Detection Systems in Cloud-Edge Continuum with Knowledge Distillation for Privacy-Preserving and Efficient Communication
- Title(参考訳): プライバシー保護と効率的なコミュニケーションのための知識蒸留によるクラウドエッジ連続体侵入検知システムの最適化
- Authors: Soad Almabdy, Amjad Ullah,
- Abstract要約: 本稿では,クラウドエッジ侵入検知における通信オーバーヘッドを低減するための知識蒸留について検討する。
実験は最先端の手法よりも大幅に改善された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The growth of the Internet of Things has amplified the need for secure data interactions in cloud-edge ecosystems, where sensitive information is constantly processed across various system layers. Intrusion detection systems are commonly used to protect such environments from malicious attacks. Recently, Federated Learning has emerged as an effective solution for implementing intrusion detection systems, owing to its decentralised architecture that avoids sharing raw data with a central server, thereby enhancing data privacy. Despite its benefits, Federated Learning faces criticism for high communication overhead from frequent model updates, especially in large-scale Cloud-Edge infrastructures. This paper explores Knowledge Distillation to reduce communication overhead in Cloud-Edge intrusion detection while preserving accuracy and data privacy. Experiments show significant improvements over state-of-the-art methods.
- Abstract(参考訳): モノのインターネット(Internet of Things)の成長は、さまざまなシステム層で機密情報が常に処理されるクラウドエッジエコシステムにおけるセキュアなデータインタラクションの必要性を増幅した。
侵入検知システムは、そのような環境を悪意のある攻撃から守るために一般的に使用される。
近年、フェデレートラーニングは、中央サーバとの生データの共有を回避し、データのプライバシを向上させる分散アーキテクチャにより、侵入検知システムを実装するための効果的なソリューションとして登場した。
そのメリットにもかかわらず、フェデレートラーニングは、特に大規模クラウド-Edgeインフラストラクチャにおいて、頻繁なモデル更新による高い通信オーバーヘッドに対する批判に直面している。
本稿では,クラウドエッジ侵入検知における通信オーバーヘッドを低減するために,精度とデータプライバシーを保ちながら知識蒸留について検討する。
実験は最先端の手法よりも大幅に改善された。
関連論文リスト
- Federated Learning-Driven Cybersecurity Framework for IoT Networks with Privacy-Preserving and Real-Time Threat Detection Capabilities [0.0]
従来の集中型セキュリティ手法は、IoTネットワークにおけるプライバシ保護とリアルタイム脅威検出のバランスをとるのに苦労することが多い。
本研究では,IoT環境に特化したフェデレート学習駆動型サイバーセキュリティフレームワークを提案する。
局所的に訓練されたモデルのセキュアアグリゲーションは、同型暗号を用いて達成され、機密情報を漏らさずに協調学習が可能である。
論文 参考訳(メタデータ) (2025-02-14T23:11:51Z) - EdgeLeakage: Membership Information Leakage in Distributed Edge Intelligence Systems [7.825521416085229]
分散エッジノードは、処理されていないデータを集約し、低送信レイテンシとリアルタイムデータ処理能力を維持できるようにデータ分析を容易にする。
近年,これらのエッジノードは分散機械学習モデルの実装を容易にするために進化している。
エッジインテリジェンスの世界では、機械学習モデルに対する多数のセキュリティとプライバシの脅威に対する感受性が明らかになっている。
本稿では,分散エッジインテリジェンスシステムにおけるメンバシップ推論リークの問題に対処する。
論文 参考訳(メタデータ) (2024-03-08T09:28:39Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Detecting Unknown Attacks in IoT Environments: An Open Set Classifier
for Enhanced Network Intrusion Detection [5.787704156827843]
本稿では,IoT環境に適したネットワーク侵入検知システム(NIDS)の領域におけるオープンセット認識(OSR)問題の緩和を目的としたフレームワークを提案する。
ネットワークトラフィックから空間的・時間的パターンを抽出し,パケットレベルデータのイメージベース表現に重きを置いている。
実験の結果は、このフレームワークの有効性を顕著に強調し、これまで見つからなかった攻撃に対して、驚くべき88%の検知率を誇示している。
論文 参考訳(メタデータ) (2023-09-14T06:41:45Z) - Edge Intelligence Over the Air: Two Faces of Interference in Federated
Learning [95.31679010587473]
フェデレートされたエッジ学習は、次世代無線ネットワークにおけるインテリジェンスの実現の基盤として考えられている。
本稿では,無線によるエッジ学習システムにおける干渉の肯定的および否定的影響について概説する。
論文 参考訳(メタデータ) (2023-06-17T09:04:48Z) - An Online Ensemble Learning Model for Detecting Attacks in Wireless
Sensor Networks [0.0]
我々は、アンサンブル学習として知られる重要な機械学習の概念を適用して、インテリジェントで効率的で、かつ、高機能な侵入検知システムを開発する。
本稿では,感覚データ解析における同種・異種のオンラインアンサンブルの応用について検討する。
提案されたオンラインアンサンブルのうち、アダプティブ・ランダム・フォレスト(ARF)とHoeffding Adaptive Tree(HAT)アルゴリズムを組み合わせた異種アンサンブルと、10モデルからなる同種アンサンブルHATは、それぞれ96.84%と97.2%という高い検出率を達成した。
論文 参考訳(メタデータ) (2022-04-28T23:10:47Z) - Towards a Privacy-preserving Deep Learning-based Network Intrusion
Detection in Data Distribution Services [0.0]
Data Distribution Service(DDS)は、ICS/IoTインフラストラクチャとロボティクスにおけるコミュニケーションに向けた革新的なアプローチである。
従来の侵入検知システム(IDS)はパブリッシュ/サブスクライブ方式では異常を検知しない。
本稿では,Deep Learningのシミュレーションと応用に関する実験的検討を行った。
論文 参考訳(メタデータ) (2021-06-12T12:53:38Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
本稿では,グラフ構造化データを用いた学習において,情報難読化による機密属性保護の問題について検討する。
本稿では,全変動量とワッサーシュタイン距離を交互に学習することで,事前決定された機密属性を局所的にフィルタリングするフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-28T17:55:04Z) - A Privacy-Preserving Distributed Architecture for
Deep-Learning-as-a-Service [68.84245063902908]
本稿では,ディープラーニング・アズ・ア・サービスのための分散アーキテクチャを提案する。
クラウドベースのマシンとディープラーニングサービスを提供しながら、ユーザの機密データを保存できる。
論文 参考訳(メタデータ) (2020-03-30T15:12:03Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
本稿では,フェデレート学習に基づくGated Recurrent Unit Neural Network Algorithm (FedGRU) というプライバシ保護機械学習手法を提案する。
FedGRUは、現在の集中学習方法と異なり、安全なパラメータアグリゲーション機構を通じて、普遍的な学習モデルを更新する。
FedGRUの予測精度は、先進的なディープラーニングモデルよりも90.96%高い。
論文 参考訳(メタデータ) (2020-03-19T13:07:49Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。