論文の概要: EdgeLeakage: Membership Information Leakage in Distributed Edge Intelligence Systems
- arxiv url: http://arxiv.org/abs/2404.16851v1
- Date: Fri, 8 Mar 2024 09:28:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 11:39:16.550894
- Title: EdgeLeakage: Membership Information Leakage in Distributed Edge Intelligence Systems
- Title(参考訳): EdgeLeakage: 分散エッジインテリジェンスシステムにおけるメンバシップ情報漏洩
- Authors: Kongyang Chen, Yi Lin, Hui Luo, Bing Mi, Yatie Xiao, Chao Ma, Jorge Sá Silva,
- Abstract要約: 分散エッジノードは、処理されていないデータを集約し、低送信レイテンシとリアルタイムデータ処理能力を維持できるようにデータ分析を容易にする。
近年,これらのエッジノードは分散機械学習モデルの実装を容易にするために進化している。
エッジインテリジェンスの世界では、機械学習モデルに対する多数のセキュリティとプライバシの脅威に対する感受性が明らかになっている。
本稿では,分散エッジインテリジェンスシステムにおけるメンバシップ推論リークの問題に対処する。
- 参考スコア(独自算出の注目度): 7.825521416085229
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In contemporary edge computing systems, decentralized edge nodes aggregate unprocessed data and facilitate data analytics to uphold low transmission latency and real-time data processing capabilities. Recently, these edge nodes have evolved to facilitate the implementation of distributed machine learning models, utilizing their computational resources to enable intelligent decision-making, thereby giving rise to an emerging domain referred to as edge intelligence. However, within the realm of edge intelligence, susceptibility to numerous security and privacy threats against machine learning models becomes evident. This paper addresses the issue of membership inference leakage in distributed edge intelligence systems. Specifically, our focus is on an autonomous scenario wherein edge nodes collaboratively generate a global model. The utilization of membership inference attacks serves to elucidate the potential data leakage in this particular context. Furthermore, we delve into the examination of several defense mechanisms aimed at mitigating the aforementioned data leakage problem. Experimental results affirm that our approach is effective in detecting data leakage within edge intelligence systems, and the implementation of our defense methods proves instrumental in alleviating this security threat. Consequently, our findings contribute to safeguarding data privacy in the context of edge intelligence systems.
- Abstract(参考訳): 現代のエッジコンピューティングシステムでは、分散化されたエッジノードが未処理のデータを集約し、低送信レイテンシとリアルタイムデータ処理能力を維持するためにデータ分析を容易にする。
近年、これらのエッジノードは分散機械学習モデルの実装を促進するために進化し、その計算資源を活用してインテリジェントな意思決定を可能にし、エッジインテリジェンスと呼ばれる新たなドメインが生まれる。
しかし、エッジインテリジェンスの世界では、機械学習モデルに対する多数のセキュリティとプライバシの脅威に対する感受性が明らかになっている。
本稿では,分散エッジインテリジェンスシステムにおけるメンバシップ推論リークの問題に対処する。
具体的には,エッジノードが協調してグローバルモデルを生成する,自律的なシナリオに注目しています。
メンバシップ推論攻撃の利用は、この特定のコンテキストにおける潜在的なデータ漏洩を解明するのに役立ちます。
さらに,上記のデータ漏洩問題の緩和を目的とした,複数の防御機構の検討を行った。
実験結果から,エッジインテリジェンスシステム内のデータ漏洩の検出には本手法が有効であることが確認された。
その結果,エッジインテリジェンスシステムのコンテキストにおけるデータプライバシ保護に寄与した。
関連論文リスト
- Adversarial Challenges in Network Intrusion Detection Systems: Research Insights and Future Prospects [0.33554367023486936]
本稿では,機械学習を用いたネットワーク侵入検知システム(NIDS)の総合的なレビューを行う。
NIDSにおける既存の研究を批判的に検討し、重要なトレンド、強み、限界を強調した。
我々は、この分野における新たな課題について議論し、より堅牢でレジリエントなNIDSの開発に向けた洞察を提供する。
論文 参考訳(メタデータ) (2024-09-27T13:27:29Z) - Generative AI for Secure and Privacy-Preserving Mobile Crowdsensing [74.58071278710896]
生成AIは、学術分野と産業分野の両方から多くの注目を集めている。
セキュアでプライバシ保護のモバイルクラウドセンシング(SPPMCS)は、データ収集/取得に広く応用されている。
論文 参考訳(メタデータ) (2024-05-17T04:00:58Z) - Distributed Threat Intelligence at the Edge Devices: A Large Language Model-Driven Approach [0.0]
エッジデバイス上の分散脅威インテリジェンスは、リソース制約されたエッジデバイス上でのサイバーセキュリティを強化するための有望なパラダイムである。
このアプローチでは、エッジデバイスに直接軽量機械学習モデルをデプロイして、ネットワークトラフィックやシステムログなどのローカルデータストリームをリアルタイムで分析する。
提案するフレームワークは,ネットワークからエッジデバイスを分離することで,サイバー脅威の検出と緩和において,より優れたセキュリティを提供することにより,エッジコンピューティングのセキュリティを向上させることができる。
論文 参考訳(メタデータ) (2024-05-14T16:40:37Z) - X-CBA: Explainability Aided CatBoosted Anomal-E for Intrusion Detection System [2.556190321164248]
Intrusion Detection Systemsにおける機械学習(ML)モデルとディープラーニング(DL)モデルの使用は、不透明な意思決定による信頼の欠如につながっている。
本稿では、グラフニューラルネットワーク(GNN)の構造的利点を活用して、ネットワークトラフィックデータを効率的に処理する新しい説明可能なIDS手法であるX-CBAを提案する。
本手法は、脅威検出の99.47%で高精度に達成し、その分析結果の明確で実用的な説明を提供する。
論文 参考訳(メタデータ) (2024-02-01T18:29:16Z) - DefectHunter: A Novel LLM-Driven Boosted-Conformer-based Code Vulnerability Detection Mechanism [3.9377491512285157]
DefectHunterは、Conformerメカニズムを利用した脆弱性識別のための革新的なモデルである。
このメカニズムは、畳み込みネットワークと自己意識を融合させ、局所的、位置的特徴とグローバル的、コンテンツに基づく相互作用の両方をキャプチャする。
論文 参考訳(メタデータ) (2023-09-27T00:10:29Z) - A Data Quarantine Model to Secure Data in Edge Computing [0.0]
エッジコンピューティングは、レイテンシに敏感で通信集約的なアプリケーションのためのアジャイルデータ処理プラットフォームを提供する。
データ整合性攻撃は一貫性のないデータにつながり、エッジデータ分析を邪魔する可能性がある。
本稿では,侵入者隔離によるデータ完全性攻撃を緩和するデータ隔離モデルを提案する。
論文 参考訳(メタデータ) (2021-11-15T11:04:48Z) - Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks,
and Defenses [150.64470864162556]
この作業は体系的に分類され、幅広いデータセット脆弱性とエクスプロイトを議論する。
様々な毒とバックドアの脅威モデルとそれらの関係を記述することに加えて,それらの統一分類法を展開する。
論文 参考訳(メタデータ) (2020-12-18T22:38:47Z) - Trustworthy AI [75.99046162669997]
入力データの小さな敵対的変化への脆さ、決定の説明能力、トレーニングデータのバイアスに対処する能力は、最も顕著な制限である。
我々は,AIシステムに対するユーザおよび公的な信頼を高める上での6つの重要な問題に対処するために,信頼に値するAIに関するチュートリアルを提案する。
論文 参考訳(メタデータ) (2020-11-02T20:04:18Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
本稿では,グラフ構造化データを用いた学習において,情報難読化による機密属性保護の問題について検討する。
本稿では,全変動量とワッサーシュタイン距離を交互に学習することで,事前決定された機密属性を局所的にフィルタリングするフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-28T17:55:04Z) - Identity-Aware Attribute Recognition via Real-Time Distributed Inference
in Mobile Edge Clouds [53.07042574352251]
我々は、MEC対応カメラ監視システムにおいて、re-IDを用いた歩行者属性認識のための新しいモデルの設計を行う。
本稿では,属性認識と人物再IDを協調的に考慮し,分散モジュールの集合を持つ新しい推論フレームワークを提案する。
そこで我々は,提案した分散推論フレームワークのモジュール分布の学習に基づくアルゴリズムを考案した。
論文 参考訳(メタデータ) (2020-08-12T12:03:27Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。