Real-time Seafloor Segmentation and Mapping
- URL: http://arxiv.org/abs/2504.10750v1
- Date: Mon, 14 Apr 2025 22:49:08 GMT
- Title: Real-time Seafloor Segmentation and Mapping
- Authors: Michele Grimaldi, Nouf Alkaabi, Francesco Ruscio, Sebastian Realpe Rua, Rafael Garcia, Nuno Gracias,
- Abstract summary: Posidonia oceanica meadows are a species of seagrass highly dependent on rocks for their survival and conservation.<n>Deep learning-based semantic segmentation and visual automated monitoring systems have shown promise in a variety of applications.<n>This paper introduces a framework that combines machine learning and computer vision techniques to enable an autonomous underwater vehicle (AUV) to inspect the boundaries of Posidonia oceanica meadows autonomously.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Posidonia oceanica meadows are a species of seagrass highly dependent on rocks for their survival and conservation. In recent years, there has been a concerning global decline in this species, emphasizing the critical need for efficient monitoring and assessment tools. While deep learning-based semantic segmentation and visual automated monitoring systems have shown promise in a variety of applications, their performance in underwater environments remains challenging due to complex water conditions and limited datasets. This paper introduces a framework that combines machine learning and computer vision techniques to enable an autonomous underwater vehicle (AUV) to inspect the boundaries of Posidonia oceanica meadows autonomously. The framework incorporates an image segmentation module using an existing Mask R-CNN model and a strategy for Posidonia oceanica meadow boundary tracking. Furthermore, a new class dedicated to rocks is introduced to enhance the existing model, aiming to contribute to a comprehensive monitoring approach and provide a deeper understanding of the intricate interactions between the meadow and its surrounding environment. The image segmentation model is validated using real underwater images, while the overall inspection framework is evaluated in a realistic simulation environment, replicating actual monitoring scenarios with real underwater images. The results demonstrate that the proposed framework enables the AUV to autonomously accomplish the main tasks of underwater inspection and segmentation of rocks. Consequently, this work holds significant potential for the conservation and protection of marine environments, providing valuable insights into the status of Posidonia oceanica meadows and supporting targeted preservation efforts
Related papers
- Learning Underwater Active Perception in Simulation [51.205673783866146]
Turbidity can jeopardise the whole mission as it may prevent correct visual documentation of the inspected structures.
Previous works have introduced methods to adapt to turbidity and backscattering.
We propose a simple yet efficient approach to enable high-quality image acquisition of assets in a broad range of water conditions.
arXiv Detail & Related papers (2025-04-23T06:48:38Z) - Image-Based Relocalization and Alignment for Long-Term Monitoring of Dynamic Underwater Environments [57.59857784298534]
We propose an integrated pipeline that combines Visual Place Recognition (VPR), feature matching, and image segmentation on video-derived images.<n>This method enables robust identification of revisited areas, estimation of rigid transformations, and downstream analysis of ecosystem changes.
arXiv Detail & Related papers (2025-03-06T05:13:19Z) - Underwater Image Enhancement using Generative Adversarial Networks: A Survey [1.2582887633807602]
Generative Adversarial Networks (GANs) have emerged as a powerful tool for enhancing underwater photos.<n>GANs have been applied to real-world applications, including marine biology and ecosystem monitoring, coral reef health assessment, underwater archaeology, and autonomous underwater vehicle (AUV) navigation.<n>This paper explores all major approaches to underwater image enhancement, from physical and physics-free models to CNN-based models and state-of-the-art GAN-based methods.
arXiv Detail & Related papers (2025-01-10T06:41:19Z) - SeagrassFinder: Deep Learning for Eelgrass Detection and Coverage Estimation in the Wild [1.0617118349563253]
Seagrass meadows play a crucial role in marine ecosystems, providing important services such as carbon sequestration.<n>Current manual methods of analyzing underwater video transects to assess seagrass coverage are time-consuming and subjective.<n>This work explores the use of deep learning models to automate the process of seagrass detection and coverage estimation from underwater video data.
arXiv Detail & Related papers (2024-12-20T18:50:54Z) - Sonar-based Deep Learning in Underwater Robotics: Overview, Robustness and Challenges [0.46873264197900916]
The predominant use of sonar in underwater environments, characterized by limited training data and inherent noise, poses challenges to model robustness.
This paper studies sonar-based perception task models, such as classification, object detection, segmentation, and SLAM.
It systematizes sonar-based state-of-the-art datasets, simulators, and robustness methods such as neural network verification, out-of-distribution, and adversarial attacks.
arXiv Detail & Related papers (2024-12-16T15:03:08Z) - Composing Open-domain Vision with RAG for Ocean Monitoring and Conservation [41.94295877935867]
We propose a resilient, scalable solution for image and video analysis in marine applications.<n>We validate this approach through a preliminary application in classifying fish from video onboard fishing vessels.
arXiv Detail & Related papers (2024-12-03T08:34:42Z) - Towards an Autonomous Surface Vehicle Prototype for Artificial Intelligence Applications of Water Quality Monitoring [68.41400824104953]
This paper presents a vehicle prototype that addresses the use of Artificial Intelligence algorithms and enhanced sensing techniques for water quality monitoring.
The vehicle is fully equipped with high-quality sensors to measure water quality parameters and water depth.
By means of a stereo-camera, it also can detect and locate macro-plastics in real environments.
arXiv Detail & Related papers (2024-10-08T10:35:32Z) - FAFA: Frequency-Aware Flow-Aided Self-Supervision for Underwater Object Pose Estimation [65.01601309903971]
We introduce FAFA, a Frequency-Aware Flow-Aided self-supervised framework for 6D pose estimation of unmanned underwater vehicles (UUVs)
Our framework relies solely on the 3D model and RGB images, alleviating the need for any real pose annotations or other-modality data like depths.
We evaluate the effectiveness of FAFA on common underwater object pose benchmarks and showcase significant performance improvements compared to state-of-the-art methods.
arXiv Detail & Related papers (2024-09-25T03:54:01Z) - ODYSSEE: Oyster Detection Yielded by Sensor Systems on Edge Electronics [14.935296890629795]
Oysters are a vital keystone species in coastal ecosystems, providing significant economic, environmental, and cultural benefits.<n>Current monitoring strategies often rely on destructive methods.<n>We propose a novel pipeline using stable diffusion to augment a collected real dataset with realistic synthetic data.
arXiv Detail & Related papers (2024-09-11T04:31:09Z) - A Computer Vision Approach to Estimate the Localized Sea State [45.498315114762484]
This research focuses on utilizing sea images in operational envelopes captured by a single stationary camera mounted on the ship bridge.
The collected images are used to train a deep learning model to automatically recognize the state of the sea based on the Beaufort scale.
arXiv Detail & Related papers (2024-07-04T09:07:25Z) - DeepAqua: Self-Supervised Semantic Segmentation of Wetland Surface Water
Extent with SAR Images using Knowledge Distillation [44.99833362998488]
We present DeepAqua, a self-supervised deep learning model that eliminates the need for manual annotations during the training phase.
We exploit cases where optical- and radar-based water masks coincide, enabling the detection of both open and vegetated water surfaces.
Experimental results show that DeepAqua outperforms other unsupervised methods by improving accuracy by 7%, Intersection Over Union by 27%, and F1 score by 14%.
arXiv Detail & Related papers (2023-05-02T18:06:21Z) - 6D Camera Relocalization in Visually Ambiguous Extreme Environments [79.68352435957266]
We propose a novel method to reliably estimate the pose of a camera given a sequence of images acquired in extreme environments such as deep seas or extraterrestrial terrains.
Our method achieves comparable performance with state-of-the-art methods on the indoor benchmark (7-Scenes dataset) using only 20% training data.
arXiv Detail & Related papers (2022-07-13T16:40:02Z) - SVAM: Saliency-guided Visual Attention Modeling by Autonomous Underwater
Robots [16.242924916178282]
This paper presents a holistic approach to saliency-guided visual attention modeling (SVAM) for use by autonomous underwater robots.
Our proposed model, named SVAM-Net, integrates deep visual features at various scales and semantics for effective salient object detection (SOD) in natural underwater images.
arXiv Detail & Related papers (2020-11-12T08:17:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.