SeagrassFinder: Deep Learning for Eelgrass Detection and Coverage Estimation in the Wild
- URL: http://arxiv.org/abs/2412.16147v1
- Date: Fri, 20 Dec 2024 18:50:54 GMT
- Title: SeagrassFinder: Deep Learning for Eelgrass Detection and Coverage Estimation in the Wild
- Authors: Jannik Elsäßer, Laura Weihl, Veronika Cheplygina, Lisbeth Tangaa Nielsen,
- Abstract summary: Seagrass meadows play a crucial role in marine ecosystems, providing important services such as carbon sequestration.
Current manual methods of analyzing underwater video transects to assess seagrass coverage are time-consuming and subjective.
This work explores the use of deep learning models to automate the process of seagrass detection and coverage estimation from underwater video data.
- Score: 1.0617118349563253
- License:
- Abstract: Seagrass meadows play a crucial role in marine ecosystems, providing important services such as carbon sequestration, water quality improvement, and habitat provision. Monitoring the distribution and abundance of seagrass is essential for environmental impact assessments and conservation efforts. However, the current manual methods of analyzing underwater video transects to assess seagrass coverage are time-consuming and subjective. This work explores the use of deep learning models to automate the process of seagrass detection and coverage estimation from underwater video data. A dataset of over 8,300 annotated underwater images was created, and several deep learning architectures, including ResNet, InceptionNetV3, DenseNet, and Vision Transformer, were evaluated for the task of binary classification of ``Eelgrass Present'' and ``Eelgrass Absent'' images. The results demonstrate that deep learning models, particularly the Vision Transformer, can achieve high performance in predicting eelgrass presence, with AUROC scores exceeding 0.95 on the final test dataset. The use of transfer learning and the application of the Deep WaveNet underwater image enhancement model further improved the models' capabilities. The proposed methodology allows for the efficient processing of large volumes of video data, enabling the acquisition of much more detailed information on seagrass distributions compared to current manual methods. This information is crucial for environmental impact assessments and monitoring programs, as seagrasses are important indicators of coastal ecosystem health. Overall, this project demonstrates the value that deep learning can bring to the field of marine ecology and environmental monitoring.
Related papers
- Towards an Autonomous Surface Vehicle Prototype for Artificial Intelligence Applications of Water Quality Monitoring [68.41400824104953]
This paper presents a vehicle prototype that addresses the use of Artificial Intelligence algorithms and enhanced sensing techniques for water quality monitoring.
The vehicle is fully equipped with high-quality sensors to measure water quality parameters and water depth.
By means of a stereo-camera, it also can detect and locate macro-plastics in real environments.
arXiv Detail & Related papers (2024-10-08T10:35:32Z) - A Computer Vision Approach to Estimate the Localized Sea State [45.498315114762484]
This research focuses on utilizing sea images in operational envelopes captured by a single stationary camera mounted on the ship bridge.
The collected images are used to train a deep learning model to automatically recognize the state of the sea based on the Beaufort scale.
arXiv Detail & Related papers (2024-07-04T09:07:25Z) - Automatic Coral Detection with YOLO: A Deep Learning Approach for Efficient and Accurate Coral Reef Monitoring [0.0]
Coral reefs are vital ecosystems that are under increasing threat due to local human impacts and climate change.
In this paper, we present an automatic coral detection system utilizing the You Only Look Once deep learning model.
arXiv Detail & Related papers (2024-04-03T08:00:46Z) - Improving Underwater Visual Tracking With a Large Scale Dataset and
Image Enhancement [70.2429155741593]
This paper presents a new dataset and general tracker enhancement method for Underwater Visual Object Tracking (UVOT)
It poses distinct challenges; the underwater environment exhibits non-uniform lighting conditions, low visibility, lack of sharpness, low contrast, camouflage, and reflections from suspended particles.
We propose a novel underwater image enhancement algorithm designed specifically to boost tracking quality.
The method has resulted in a significant performance improvement, of up to 5.0% AUC, of state-of-the-art (SOTA) visual trackers.
arXiv Detail & Related papers (2023-08-30T07:41:26Z) - FisHook -- An Optimized Approach to Marine Specie Classification using
MobileNetV2 [5.565562836494568]
classification and monitoring of marine species can aid in understanding their distribution, population dynamics, and the impact of human activities on them.
Deep-learning algorithms can now efficiently classify marine species, making it easier to monitor and manage marine ecosystems.
arXiv Detail & Related papers (2023-04-04T04:30:25Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Efficient Unsupervised Learning for Plankton Images [12.447149371717]
Monitoring plankton populations in situ is fundamental to preserve the aquatic ecosystem.
The adoption of machine learning algorithms to classify such data may be affected by the significant cost of manual annotation.
We propose an efficient unsupervised learning pipeline to provide accurate classification of plankton microorganisms.
arXiv Detail & Related papers (2022-09-14T15:33:16Z) - Learning-based estimation of in-situ wind speed from underwater
acoustics [58.293528982012255]
We introduce a deep learning approach for the retrieval of wind speed time series from underwater acoustics.
Our approach bridges data assimilation and learning-based frameworks to benefit both from prior physical knowledge and computational efficiency.
arXiv Detail & Related papers (2022-08-18T15:27:40Z) - A Novel Underwater Image Enhancement and Improved Underwater Biological
Detection Pipeline [8.326477369707122]
This paper proposes a novel method for capturing feature information, which adds the convolutional block attention module (CBAM) to the YOLOv5 backbone.
The interference of underwater creature characteristics on object characteristics is decreased, and the output of the backbone network to object information is enhanced.
arXiv Detail & Related papers (2022-05-20T14:18:17Z) - Movement Tracks for the Automatic Detection of Fish Behavior in Videos [63.85815474157357]
We offer a dataset of sablefish (Anoplopoma fimbria) startle behaviors in underwater videos, and investigate the use of deep learning (DL) methods for behavior detection on it.
Our proposed detection system identifies fish instances using DL-based frameworks, determines trajectory tracks, derives novel behavior-specific features, and employs Long Short-Term Memory (LSTM) networks to identify startle behavior in sablefish.
arXiv Detail & Related papers (2020-11-28T05:51:19Z) - A Realistic Fish-Habitat Dataset to Evaluate Algorithms for Underwater
Visual Analysis [2.6476746128312194]
We present DeepFish as a benchmark suite with a large-scale dataset to train and test methods for several computer vision tasks.
The dataset consists of approximately 40 thousand images collected underwater from 20 greenhabitats in the marine-environments of tropical Australia.
Our experiments provide an in-depth analysis of the dataset characteristics, and the performance evaluation of several state-of-the-art approaches.
arXiv Detail & Related papers (2020-08-28T12:20:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.