Sonar-based Deep Learning in Underwater Robotics: Overview, Robustness and Challenges
- URL: http://arxiv.org/abs/2412.11840v1
- Date: Mon, 16 Dec 2024 15:03:08 GMT
- Title: Sonar-based Deep Learning in Underwater Robotics: Overview, Robustness and Challenges
- Authors: Martin Aubard, Ana Madureira, Luís Teixeira, José Pinto,
- Abstract summary: The predominant use of sonar in underwater environments, characterized by limited training data and inherent noise, poses challenges to model robustness.
This paper studies sonar-based perception task models, such as classification, object detection, segmentation, and SLAM.
It systematizes sonar-based state-of-the-art datasets, simulators, and robustness methods such as neural network verification, out-of-distribution, and adversarial attacks.
- Score: 0.46873264197900916
- License:
- Abstract: With the growing interest in underwater exploration and monitoring, Autonomous Underwater Vehicles (AUVs) have become essential. The recent interest in onboard Deep Learning (DL) has advanced real-time environmental interaction capabilities relying on efficient and accurate vision-based DL models. However, the predominant use of sonar in underwater environments, characterized by limited training data and inherent noise, poses challenges to model robustness. This autonomy improvement raises safety concerns for deploying such models during underwater operations, potentially leading to hazardous situations. This paper aims to provide the first comprehensive overview of sonar-based DL under the scope of robustness. It studies sonar-based DL perception task models, such as classification, object detection, segmentation, and SLAM. Furthermore, the paper systematizes sonar-based state-of-the-art datasets, simulators, and robustness methods such as neural network verification, out-of-distribution, and adversarial attacks. This paper highlights the lack of robustness in sonar-based DL research and suggests future research pathways, notably establishing a baseline sonar-based dataset and bridging the simulation-to-reality gap.
Related papers
- Underwater Image Enhancement using Generative Adversarial Networks: A Survey [1.2582887633807602]
Generative Adversarial Networks (GANs) have emerged as a powerful tool for enhancing underwater photos.
GANs have been applied to real-world applications, including marine biology and ecosystem monitoring, coral reef health assessment, underwater archaeology, and autonomous underwater vehicle (AUV) navigation.
This paper explores all major approaches to underwater image enhancement, from physical and physics-free models to CNN-based models and state-of-the-art GAN-based methods.
arXiv Detail & Related papers (2025-01-10T06:41:19Z) - Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - FAFA: Frequency-Aware Flow-Aided Self-Supervision for Underwater Object Pose Estimation [65.01601309903971]
We introduce FAFA, a Frequency-Aware Flow-Aided self-supervised framework for 6D pose estimation of unmanned underwater vehicles (UUVs)
Our framework relies solely on the 3D model and RGB images, alleviating the need for any real pose annotations or other-modality data like depths.
We evaluate the effectiveness of FAFA on common underwater object pose benchmarks and showcase significant performance improvements compared to state-of-the-art methods.
arXiv Detail & Related papers (2024-09-25T03:54:01Z) - Scale-Translation Equivariant Network for Oceanic Internal Solitary Wave Localization [7.444865250744234]
Internal solitary waves (ISWs) are gravity waves that are often observed in the interior ocean rather than the surface.
Cloud cover in optical remote sensing images variably obscures ground information, leading to blurred or missing surface observations.
This paper aims at altimeter-based machine learning solutions to automatically locate ISWs.
arXiv Detail & Related papers (2024-06-18T21:09:56Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
We propose a new benchmarking environment for aquatic navigation using recent advances in the integration between game engines and Deep Reinforcement Learning.
Specifically, we focus on PPO, one of the most widely accepted algorithms, and we propose advanced training techniques.
Our empirical evaluation shows that a well-designed combination of these ingredients can achieve promising results.
arXiv Detail & Related papers (2024-05-30T23:20:23Z) - Stealing Stable Diffusion Prior for Robust Monocular Depth Estimation [33.140210057065644]
This paper introduces a novel approach named Stealing Stable Diffusion (SSD) prior for robust monocular depth estimation.
The approach addresses this limitation by utilizing stable diffusion to generate synthetic images that mimic challenging conditions.
The effectiveness of the approach is evaluated on nuScenes and Oxford RobotCar, two challenging public datasets.
arXiv Detail & Related papers (2024-03-08T05:06:31Z) - Bridging the Gap to Real-World Object-Centric Learning [66.55867830853803]
We show that reconstructing features from models trained in a self-supervised manner is a sufficient training signal for object-centric representations to arise in a fully unsupervised way.
Our approach, DINOSAUR, significantly out-performs existing object-centric learning models on simulated data.
arXiv Detail & Related papers (2022-09-29T15:24:47Z) - Underwater Object Classification and Detection: first results and open
challenges [1.1549572298362782]
This work reviews the problem of object detection in underwater environments.
We analyse and quantify the shortcomings of conventional state-of-the-art (SOTA) algorithms.
arXiv Detail & Related papers (2022-01-04T04:54:08Z) - Benchmarking Safe Deep Reinforcement Learning in Aquatic Navigation [78.17108227614928]
We propose a benchmark environment for Safe Reinforcement Learning focusing on aquatic navigation.
We consider a value-based and policy-gradient Deep Reinforcement Learning (DRL)
We also propose a verification strategy that checks the behavior of the trained models over a set of desired properties.
arXiv Detail & Related papers (2021-12-16T16:53:56Z) - Offline Reinforcement Learning from Images with Latent Space Models [60.69745540036375]
offline reinforcement learning (RL) refers to the problem of learning policies from a static dataset of environment interactions.
We build on recent advances in model-based algorithms for offline RL, and extend them to high-dimensional visual observation spaces.
Our approach is both tractable in practice and corresponds to maximizing a lower bound of the ELBO in the unknown POMDP.
arXiv Detail & Related papers (2020-12-21T18:28:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.