auto-fpt: Automating Free Probability Theory Calculations for Machine Learning Theory
- URL: http://arxiv.org/abs/2504.10754v1
- Date: Mon, 14 Apr 2025 23:07:56 GMT
- Title: auto-fpt: Automating Free Probability Theory Calculations for Machine Learning Theory
- Authors: Arjun Subramonian, Elvis Dohmatob,
- Abstract summary: We introduce auto-fpt, a lightweight Python and SymPy-based tool that can automatically produce a reduced system of fixed-point equations.<n>We discuss the algorithmic ideas underlying auto-fpt and its applications to various interesting problems, such as the high-dimensional error of linearized feed-forward neural networks.<n>We hope that auto-fpt streamlines the majority of calculations involved in high-dimensional analysis, while helping the machine learning community reproduce known and uncover new phenomena.
- Score: 15.818983062309977
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A large part of modern machine learning theory often involves computing the high-dimensional expected trace of a rational expression of large rectangular random matrices. To symbolically compute such quantities using free probability theory, we introduce auto-fpt, a lightweight Python and SymPy-based tool that can automatically produce a reduced system of fixed-point equations which can be solved for the quantities of interest, and effectively constitutes a theory. We overview the algorithmic ideas underlying auto-fpt and its applications to various interesting problems, such as the high-dimensional error of linearized feed-forward neural networks, recovering well-known results. We hope that auto-fpt streamlines the majority of calculations involved in high-dimensional analysis, while helping the machine learning community reproduce known and uncover new phenomena.
Related papers
- Learning Quantitative Automata Modulo Theories [17.33092604696224]
We present QUINTIC, an active learning algorithm, wherein the learner infers a valid automaton through deductive reasoning.
Our evaluations utilize theory of rationals in order to learn summation, discounted summation, product, and classification quantitative automata.
arXiv Detail & Related papers (2024-11-15T21:51:14Z) - Learning Linear Attention in Polynomial Time [115.68795790532289]
We provide the first results on learnability of single-layer Transformers with linear attention.
We show that linear attention may be viewed as a linear predictor in a suitably defined RKHS.
We show how to efficiently identify training datasets for which every empirical riskr is equivalent to the linear Transformer.
arXiv Detail & Related papers (2024-10-14T02:41:01Z) - A Unified Framework for Neural Computation and Learning Over Time [56.44910327178975]
Hamiltonian Learning is a novel unified framework for learning with neural networks "over time"
It is based on differential equations that: (i) can be integrated without the need of external software solvers; (ii) generalize the well-established notion of gradient-based learning in feed-forward and recurrent networks; (iii) open to novel perspectives.
arXiv Detail & Related papers (2024-09-18T14:57:13Z) - A Theory of Machine Learning [0.0]
We show that this theory challenges common assumptions in the statistical and the computational learning theories.
We briefly discuss some case studies from natural language processing and macroeconomics from the perspective of the new theory.
arXiv Detail & Related papers (2024-07-07T23:57:10Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - A Survey on Brain-Inspired Deep Learning via Predictive Coding [85.93245078403875]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.<n>PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - Computing large deviation prefactors of stochastic dynamical systems
based on machine learning [4.474127100870242]
We present large deviation theory that characterizes the exponential estimate for rare events of dynamical systems in the limit of weak noise.
We design a neural network framework to compute quasipotential, most probable paths and prefactors based on the decomposition of vector field.
Numerical experiments demonstrate its powerful function in exploring internal mechanism of rare events triggered by weak random fluctuations.
arXiv Detail & Related papers (2023-06-20T09:59:45Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
Key to effective use of machine learning tools in multi-physics problems is to couple them to physical and computer models.
The present chapter reviews some of the open opportunities for the application of data-driven reduced-order modeling of combustion systems.
arXiv Detail & Related papers (2022-09-05T16:48:34Z) - General stochastic separation theorems with optimal bounds [68.8204255655161]
Phenomenon of separability was revealed and used in machine learning to correct errors of Artificial Intelligence (AI) systems and analyze AI instabilities.
Errors or clusters of errors can be separated from the rest of the data.
The ability to correct an AI system also opens up the possibility of an attack on it, and the high dimensionality induces vulnerabilities caused by the same separability.
arXiv Detail & Related papers (2020-10-11T13:12:41Z) - Verification of ML Systems via Reparameterization [6.482926592121413]
We show how a probabilistic program can be automatically represented in a theorem prover.
We also prove that the null model used in a Bayesian hypothesis test satisfies a fairness criterion called demographic parity.
arXiv Detail & Related papers (2020-07-14T02:19:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.