Collaborative Bayesian Optimization via Wasserstein Barycenters
- URL: http://arxiv.org/abs/2504.10770v1
- Date: Tue, 15 Apr 2025 00:15:09 GMT
- Title: Collaborative Bayesian Optimization via Wasserstein Barycenters
- Authors: Donglin Zhan, Haoting Zhang, Rhonda Righter, Zeyu Zheng, James Anderson,
- Abstract summary: We introduce a collaborative Bayesian optimization (BO) framework that addresses black-box optimization and data privacy challenges.<n>In this framework agents work collaboratively to optimize a function they only have oracle access to.<n>We prove that our proposed algorithm is numerically consistent and that its implementation via Monte Carlo methods is accurate.
- Score: 11.41081495236219
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by the growing need for black-box optimization and data privacy, we introduce a collaborative Bayesian optimization (BO) framework that addresses both of these challenges. In this framework agents work collaboratively to optimize a function they only have oracle access to. In order to mitigate against communication and privacy constraints, agents are not allowed to share their data but can share their Gaussian process (GP) surrogate models. To enable collaboration under these constraints, we construct a central model to approximate the objective function by leveraging the concept of Wasserstein barycenters of GPs. This central model integrates the shared models without accessing the underlying data. A key aspect of our approach is a collaborative acquisition function that balances exploration and exploitation, allowing for the optimization of decision variables collaboratively in each iteration. We prove that our proposed algorithm is asymptotically consistent and that its implementation via Monte Carlo methods is numerically accurate. Through numerical experiments, we demonstrate that our approach outperforms other baseline collaborative frameworks and is competitive with centralized approaches that do not consider data privacy.
Related papers
- FedCIA: Federated Collaborative Information Aggregation for Privacy-Preserving Recommendation [28.8047308546416]
We introduce the federated collaborative information aggregation (FedCIA) method for privacy-preserving recommendation.
FedCIA allows clients to align their local models without constraining embeddings to a unified vector space.
It mitigates information loss caused by direct summation, preserves the personalized embedding distributions of individual clients, and supports the aggregation of parameter-free models.
arXiv Detail & Related papers (2025-04-19T06:59:34Z) - Collab: Controlled Decoding using Mixture of Agents for LLM Alignment [90.6117569025754]
Reinforcement learning from human feedback has emerged as an effective technique to align Large Language models.<n>Controlled Decoding provides a mechanism for aligning a model at inference time without retraining.<n>We propose a mixture of agent-based decoding strategies leveraging the existing off-the-shelf aligned LLM policies.
arXiv Detail & Related papers (2025-03-27T17:34:25Z) - Self-Interested Agents in Collaborative Machine Learning: An Incentivized Adaptive Data-Centric Framework [34.19393519060549]
We propose a framework for data-centric collaborative machine learning among self-interested agents.<n>An arbiter collects a batch of data from agents, trains a machine learning model, and provides each agent with a distinct model reflecting its data contributions.<n>This setup establishes a feedback loop where shared data influence model updates, and the resulting models guide future data-sharing policies.
arXiv Detail & Related papers (2024-12-09T15:47:36Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
We propose an effective framework for Bridging and Modeling Correlations in pairwise data, named BMC.<n>We increase the consistency and informativeness of the pairwise preference signals through targeted modifications.<n>We identify that DPO alone is insufficient to model these correlations and capture nuanced variations.
arXiv Detail & Related papers (2024-08-14T11:29:47Z) - MAP: Low-compute Model Merging with Amortized Pareto Fronts via Quadratic Approximation [80.47072100963017]
We introduce a novel and low-compute algorithm, Model Merging with Amortized Pareto Front (MAP)
MAP efficiently identifies a set of scaling coefficients for merging multiple models, reflecting the trade-offs involved.
We also introduce Bayesian MAP for scenarios with a relatively low number of tasks and Nested MAP for situations with a high number of tasks, further reducing the computational cost of evaluation.
arXiv Detail & Related papers (2024-06-11T17:55:25Z) - Decentralized Directed Collaboration for Personalized Federated Learning [39.29794569421094]
We concentrate on the Decentralized Personalized Learning (DPFL) that performs distributed training model computation.
We propose a directed collaboration framework by incorporating textbfDecentralized textbfFederated textbfPartial textbfGradient textbfPedGP.
arXiv Detail & Related papers (2024-05-28T06:52:19Z) - Balancing Similarity and Complementarity for Federated Learning [91.65503655796603]
Federated Learning (FL) is increasingly important in mobile and IoT systems.
One key challenge in FL is managing statistical heterogeneity, such as non-i.i.d. data.
We introduce a novel framework, textttFedSaC, which balances similarity and complementarity in FL cooperation.
arXiv Detail & Related papers (2024-05-16T08:16:19Z) - Bridging Data Barriers among Participants: Assessing the Potential of Geoenergy through Federated Learning [2.8498944632323755]
This study introduces a novel federated learning (FL) framework based on XGBoost models.
FL models demonstrate superior accuracy and generalization capabilities compared to separate models.
This study opens new avenues for assessing unconventional reservoirs through collaborative and privacy-preserving FL techniques.
arXiv Detail & Related papers (2024-04-29T09:12:31Z) - What Makes Good Collaborative Views? Contrastive Mutual Information Maximization for Multi-Agent Perception [52.41695608928129]
Multi-agent perception (MAP) allows autonomous systems to understand complex environments by interpreting data from multiple sources.
This paper investigates intermediate collaboration for MAP with a specific focus on exploring "good" properties of collaborative view.
We propose a novel framework named CMiMC for intermediate collaboration.
arXiv Detail & Related papers (2024-03-15T07:18:55Z) - BOtied: Multi-objective Bayesian optimization with tied multivariate ranks [33.414682601242006]
In this paper, we show a natural connection between non-dominated solutions and the extreme quantile of the joint cumulative distribution function.
Motivated by this link, we propose the Pareto-compliant CDF indicator and the associated acquisition function, BOtied.
Our experiments on a variety of synthetic and real-world problems demonstrate that BOtied outperforms state-of-the-art MOBO acquisition functions.
arXiv Detail & Related papers (2023-06-01T04:50:06Z) - Approximate Bayesian Optimisation for Neural Networks [6.921210544516486]
A body of work has been done to automate machine learning algorithm to highlight the importance of model choice.
The necessity to solve the analytical tractability and the computational feasibility in a idealistic fashion enables to ensure the efficiency and the applicability.
arXiv Detail & Related papers (2021-08-27T19:03:32Z) - Decentralized MCTS via Learned Teammate Models [89.24858306636816]
We present a trainable online decentralized planning algorithm based on decentralized Monte Carlo Tree Search.
We show that deep learning and convolutional neural networks can be employed to produce accurate policy approximators.
arXiv Detail & Related papers (2020-03-19T13:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.