論文の概要: ZeroGrasp: Zero-Shot Shape Reconstruction Enabled Robotic Grasping
- arxiv url: http://arxiv.org/abs/2504.10857v1
- Date: Tue, 15 Apr 2025 04:37:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:06:49.197214
- Title: ZeroGrasp: Zero-Shot Shape Reconstruction Enabled Robotic Grasping
- Title(参考訳): ZeroGrasp: ロボットグラスピングを実現するゼロショット形状復元
- Authors: Shun Iwase, Zubair Irshad, Katherine Liu, Vitor Guizilini, Robert Lee, Takuya Ikeda, Ayako Amma, Koichi Nishiwaki, Kris Kitani, Rares Ambrus, Sergey Zakharov,
- Abstract要約: リアルタイムに3次元再構成とポーズ予測を同時に行うZeroGraspを紹介した。
我々はGraspNet-1BベンチマークでZeroGraspを実世界のロボット実験で評価した。
- 参考スコア(独自算出の注目度): 40.288085021667065
- License:
- Abstract: Robotic grasping is a cornerstone capability of embodied systems. Many methods directly output grasps from partial information without modeling the geometry of the scene, leading to suboptimal motion and even collisions. To address these issues, we introduce ZeroGrasp, a novel framework that simultaneously performs 3D reconstruction and grasp pose prediction in near real-time. A key insight of our method is that occlusion reasoning and modeling the spatial relationships between objects is beneficial for both accurate reconstruction and grasping. We couple our method with a novel large-scale synthetic dataset, which comprises 1M photo-realistic images, high-resolution 3D reconstructions and 11.3B physically-valid grasp pose annotations for 12K objects from the Objaverse-LVIS dataset. We evaluate ZeroGrasp on the GraspNet-1B benchmark as well as through real-world robot experiments. ZeroGrasp achieves state-of-the-art performance and generalizes to novel real-world objects by leveraging synthetic data.
- Abstract(参考訳): ロボットの握りは、エンボディシステムの基礎となる能力である。
多くの手法はシーンの幾何学をモデル化せずに部分的な情報から把握を直接出力し、最適下運動や衝突に至る。
これらの問題に対処するため、ZeroGraspという3次元再構成とポーズ予測をほぼリアルタイムで同時に行う新しいフレームワークを紹介した。
提案手法の重要な洞察は,物体間の空間的関係のモデル化と排他的推論が,正確な再構築と把握の両立に有用であるということである。
提案手法は,Objaverse-LVISデータセットから得られた12Kオブジェクトに対して,100万枚の写真リアル画像,高解像度3D再構成,11.3Bのグリップポーズアノテーションを含む,新しい大規模合成データセットと組み合わせたものである。
我々はGraspNet-1BベンチマークでZeroGraspを実世界のロボット実験で評価した。
ZeroGraspは最先端のパフォーマンスを実現し、合成データを活用することで、新しい現実世界のオブジェクトに一般化する。
関連論文リスト
- CAST: Component-Aligned 3D Scene Reconstruction from an RGB Image [44.8172828045897]
現在のメソッドはドメイン固有の制限や低品質のオブジェクト生成に悩まされることが多い。
本稿では,3次元シーンの復元と復元のための新しい手法であるCASTを提案する。
論文 参考訳(メタデータ) (2025-02-18T14:29:52Z) - Uncertainty-aware Active Learning of NeRF-based Object Models for Robot Manipulators using Visual and Re-orientation Actions [8.059133373836913]
本稿では,ロボットが対象物の完全な3次元モデルを高速に学習し,不慣れな方向で操作できるアプローチを提案する。
我々は、部分的に構築されたNeRFモデルのアンサンブルを用いて、モデルの不確実性を定量化し、次の動作を決定する。
提案手法は, 部分的NeRFモデルにより対象物をいつ, どのように把握し, 再指向するかを判断し, 相互作用中に導入された不整合を補正するために, 対象のポーズを再推定する。
論文 参考訳(メタデータ) (2024-04-02T10:15:06Z) - Total-Decom: Decomposed 3D Scene Reconstruction with Minimal Interaction [51.3632308129838]
人間のインタラクションを最小限に抑えた3次元再構成法であるTotal-Decomを提案する。
提案手法は,Segment Anything Model (SAM) とハイブリッド型暗黙的なニューラルサーフェス表現をシームレスに統合し,メッシュベースの領域成長技術を用いて正確な3次元オブジェクト分解を行う。
提案手法をベンチマークデータセット上で広範囲に評価し,アニメーションやシーン編集などの下流アプリケーションの可能性を示す。
論文 参考訳(メタデータ) (2024-03-28T11:12:33Z) - Zero123-6D: Zero-shot Novel View Synthesis for RGB Category-level 6D Pose Estimation [66.3814684757376]
本研究は,RGB 6Dのカテゴリレベルでのポーズ推定を向上するための拡散モデルに基づく新規ビュー合成器の実用性を示す最初の研究であるZero123-6Dを示す。
本手法は,データ要求の低減,ゼロショットカテゴリレベルの6Dポーズ推定タスクにおける深度情報の必要性の除去,およびCO3Dデータセットの実験により定量的に示された性能の向上を示す。
論文 参考訳(メタデータ) (2024-03-21T10:38:18Z) - Robust Category-Level 3D Pose Estimation from Synthetic Data [17.247607850702558]
CADモデルから生成されたオブジェクトポーズ推定のための新しい合成データセットであるSyntheticP3Dを紹介する。
逆レンダリングによるポーズ推定を行うニューラルネットワークモデルをトレーニングするための新しいアプローチ(CC3D)を提案する。
論文 参考訳(メタデータ) (2023-05-25T14:56:03Z) - Zero-1-to-3: Zero-shot One Image to 3D Object [30.455300183998247]
単一のRGB画像のみを与えられたオブジェクトのカメラ視点を変更するためのフレームワークであるZero-1-to-3を紹介する。
条件拡散モデルは、合成データセットを用いて、相対カメラ視点の制御を学習する。
提案手法は,インターネット規模の事前学習を活用して,最先端の1次元3次元再構成と新しいビュー合成モデルよりも優れていた。
論文 参考訳(メタデータ) (2023-03-20T17:59:50Z) - Shape, Pose, and Appearance from a Single Image via Bootstrapped
Radiance Field Inversion [54.151979979158085]
提案手法では,自然画像に対する基本的エンドツーエンド再構築フレームワークを導入し,正確な地平のポーズが得られない。
そこで,モデルが解の第一の推算を生成するハイブリッド・インバージョン・スキームを適用する。
当社のフレームワークでは,イメージを10ステップでデレンダリングすることが可能で,現実的なシナリオで使用することが可能です。
論文 参考訳(メタデータ) (2022-11-21T17:42:42Z) - RandomRooms: Unsupervised Pre-training from Synthetic Shapes and
Randomized Layouts for 3D Object Detection [138.2892824662943]
有望な解決策は、CADオブジェクトモデルで構成される合成データセットをよりよく利用して、実際のデータセットでの学習を促進することである。
最近の3次元事前学習の研究は、合成物体から他の実世界の応用へ学習した伝達特性が失敗することを示している。
本研究では,この目的を達成するためにRandomRoomsという新しい手法を提案する。
論文 参考訳(メタデータ) (2021-08-17T17:56:12Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
コンピュータビジョン、ロボティクス、グラフィックスの様々な用途において、高精細な3Dオブジェクトをスパースから再構築することは重要です。
最近の神経暗黙的モデリング法は、合成データセットまたは高密度データセットで有望な結果を示す。
しかし、粗末でノイズの多い実世界のデータではパフォーマンスが悪い。
本論文では, 一般的な神経暗黙モデルの性能低下の根本原因を解析する。
論文 参考訳(メタデータ) (2021-01-18T03:24:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。