ZeroGrasp: Zero-Shot Shape Reconstruction Enabled Robotic Grasping
- URL: http://arxiv.org/abs/2504.10857v1
- Date: Tue, 15 Apr 2025 04:37:39 GMT
- Title: ZeroGrasp: Zero-Shot Shape Reconstruction Enabled Robotic Grasping
- Authors: Shun Iwase, Zubair Irshad, Katherine Liu, Vitor Guizilini, Robert Lee, Takuya Ikeda, Ayako Amma, Koichi Nishiwaki, Kris Kitani, Rares Ambrus, Sergey Zakharov,
- Abstract summary: We introduce ZeroGrasp, a framework that simultaneously performs 3D reconstruction and grasp pose prediction in near real-time.<n>We evaluate ZeroGrasp on the GraspNet-1B benchmark as well as through real-world robot experiments.
- Score: 40.288085021667065
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robotic grasping is a cornerstone capability of embodied systems. Many methods directly output grasps from partial information without modeling the geometry of the scene, leading to suboptimal motion and even collisions. To address these issues, we introduce ZeroGrasp, a novel framework that simultaneously performs 3D reconstruction and grasp pose prediction in near real-time. A key insight of our method is that occlusion reasoning and modeling the spatial relationships between objects is beneficial for both accurate reconstruction and grasping. We couple our method with a novel large-scale synthetic dataset, which comprises 1M photo-realistic images, high-resolution 3D reconstructions and 11.3B physically-valid grasp pose annotations for 12K objects from the Objaverse-LVIS dataset. We evaluate ZeroGrasp on the GraspNet-1B benchmark as well as through real-world robot experiments. ZeroGrasp achieves state-of-the-art performance and generalizes to novel real-world objects by leveraging synthetic data.
Related papers
- HORT: Monocular Hand-held Objects Reconstruction with Transformers [61.36376511119355]
Reconstructing hand-held objects in 3D from monocular images is a significant challenge in computer vision.
We propose a transformer-based model to efficiently reconstruct dense 3D point clouds of hand-held objects.
Our method achieves state-of-the-art accuracy with much faster inference speed, while generalizing well to in-the-wild images.
arXiv Detail & Related papers (2025-03-27T09:45:09Z) - CAST: Component-Aligned 3D Scene Reconstruction from an RGB Image [44.8172828045897]
Current methods often struggle with domain-specific limitations or low-quality object generation.<n>We propose CAST, a novel method for 3D scene reconstruction and recovery.
arXiv Detail & Related papers (2025-02-18T14:29:52Z) - Uncertainty-aware Active Learning of NeRF-based Object Models for Robot Manipulators using Visual and Re-orientation Actions [8.059133373836913]
This paper presents an approach that enables a robot to rapidly learn the complete 3D model of a given object for manipulation in unfamiliar orientations.
We use an ensemble of partially constructed NeRF models to quantify model uncertainty to determine the next action.
Our approach determines when and how to grasp and re-orient an object given its partial NeRF model and re-estimates the object pose to rectify misalignments introduced during the interaction.
arXiv Detail & Related papers (2024-04-02T10:15:06Z) - Zero123-6D: Zero-shot Novel View Synthesis for RGB Category-level 6D Pose Estimation [66.3814684757376]
This work presents Zero123-6D, the first work to demonstrate the utility of Diffusion Model-based novel-view-synthesizers in enhancing RGB 6D pose estimation at category-level.
The outlined method shows reduction in data requirements, removal of the necessity of depth information in zero-shot category-level 6D pose estimation task, and increased performance, quantitatively demonstrated through experiments on the CO3D dataset.
arXiv Detail & Related papers (2024-03-21T10:38:18Z) - Robust Category-Level 3D Pose Estimation from Synthetic Data [17.247607850702558]
We introduce SyntheticP3D, a new synthetic dataset for object pose estimation generated from CAD models.
We propose a novel approach (CC3D) for training neural mesh models that perform pose estimation via inverse rendering.
arXiv Detail & Related papers (2023-05-25T14:56:03Z) - Zero-1-to-3: Zero-shot One Image to 3D Object [30.455300183998247]
We introduce Zero-1-to-3, a framework for changing the camera viewpoint of an object given just a single RGB image.
Our conditional diffusion model uses a synthetic dataset to learn controls of the relative camera viewpoint.
Our method significantly outperforms state-of-the-art single-view 3D reconstruction and novel view synthesis models by leveraging Internet-scale pre-training.
arXiv Detail & Related papers (2023-03-20T17:59:50Z) - Shape, Pose, and Appearance from a Single Image via Bootstrapped
Radiance Field Inversion [54.151979979158085]
We introduce a principled end-to-end reconstruction framework for natural images, where accurate ground-truth poses are not available.
We leverage an unconditional 3D-aware generator, to which we apply a hybrid inversion scheme where a model produces a first guess of the solution.
Our framework can de-render an image in as few as 10 steps, enabling its use in practical scenarios.
arXiv Detail & Related papers (2022-11-21T17:42:42Z) - RandomRooms: Unsupervised Pre-training from Synthetic Shapes and
Randomized Layouts for 3D Object Detection [138.2892824662943]
A promising solution is to make better use of the synthetic dataset, which consists of CAD object models, to boost the learning on real datasets.
Recent work on 3D pre-training exhibits failure when transfer features learned on synthetic objects to other real-world applications.
In this work, we put forward a new method called RandomRooms to accomplish this objective.
arXiv Detail & Related papers (2021-08-17T17:56:12Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
Reconstructing high-fidelity 3D objects from sparse, partial observation is crucial for various applications in computer vision, robotics, and graphics.
Recent neural implicit modeling methods show promising results on synthetic or dense datasets.
But, they perform poorly on real-world data that is sparse and noisy.
This paper analyzes the root cause of such deficient performance of a popular neural implicit model.
arXiv Detail & Related papers (2021-01-18T03:24:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.