論文の概要: Weather-Aware Object Detection Transformer for Domain Adaptation
- arxiv url: http://arxiv.org/abs/2504.10877v1
- Date: Tue, 15 Apr 2025 05:11:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:10:00.199561
- Title: Weather-Aware Object Detection Transformer for Domain Adaptation
- Title(参考訳): ドメイン適応のための気象対応物体検出変換器
- Authors: Soheil Gharatappeh, Salimeh Sekeh, Vikas Dhiman,
- Abstract要約: RT-DETRは様々なコンピュータビジョンタスクで強い性能を示してきたが、霧のような困難な気象条件下では劣化することが知られている。
本研究では,霧環境におけるRT-DETRロバスト性を高める3つの新しい手法について検討する。
- 参考スコア(独自算出の注目度): 1.4952056744888913
- License:
- Abstract: RT-DETRs have shown strong performance across various computer vision tasks but are known to degrade under challenging weather conditions such as fog. In this work, we investigate three novel approaches to enhance RT-DETR robustness in foggy environments: (1) Domain Adaptation via Perceptual Loss, which distills domain-invariant features from a teacher network to a student using perceptual supervision; (2) Weather Adaptive Attention, which augments the attention mechanism with fog-sensitive scaling by introducing an auxiliary foggy image stream; and (3) Weather Fusion Encoder, which integrates a dual-stream encoder architecture that fuses clear and foggy image features via multi-head self and cross-attention. Despite the architectural innovations, none of the proposed methods consistently outperform the baseline RT-DETR. We analyze the limitations and potential causes, offering insights for future research in weather-aware object detection.
- Abstract(参考訳): RT-DETRは様々なコンピュータビジョンタスクで強い性能を示してきたが、霧のような困難な気象条件下では劣化することが知られている。
本研究では,(1)教師ネットワークから学生へのドメイン不変の特徴を抽出する知覚損失によるドメイン適応,(2)補助的な霧画像ストリームの導入による霧感的スケーリングによる注意機構の強化,(3)マルチヘッド・セルフ・クロスアテンションによる鮮明で霧感的なイメージ特徴を融合したデュアルストリームエンコーダアーキテクチャを統合した気象拡散エンコーダの3つの新しいアプローチについて検討する。
アーキテクチャの革新にもかかわらず、提案された手法はRT-DETRを一貫して上回るものではなかった。
我々は、気象に敏感な物体検出における将来の研究の洞察を提供するとともに、その限界と潜在的な原因を分析した。
関連論文リスト
- Multi-Modality Driven LoRA for Adverse Condition Depth Estimation [61.525312117638116]
逆条件深さ推定のためのMulti-Modality Driven LoRA(MMD-LoRA)を提案する。
Prompt Driven Domain Alignment (PDDA) と Visual-Text Consistent Contrastive Learning (VTCCL) の2つのコアコンポーネントで構成されている。
nuScenesとOxford RobotCarデータセットの最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-12-28T14:23:58Z) - D-YOLO a robust framework for object detection in adverse weather conditions [0.0]
ヘイズ、雪、雨などの逆の気象条件は、画像品質の低下を招き、深層学習に基づく検知ネットワークの性能低下を招きかねない。
画像復元とオブジェクト検出のタスクをよりうまく統合するために,注目機能融合モジュールを備えた二重経路ネットワークを設計した。
我々はまた,検出ネットワークにヘイズフリーな機能を提供するサブネットワークを提案し,特に,明瞭な特徴抽出サブネットワークと検出ネットワーク間の距離を最小化することにより,検出ネットワークの性能を向上させる。
論文 参考訳(メタデータ) (2024-03-14T09:57:15Z) - Domain Adaptation based Object Detection for Autonomous Driving in Foggy and Rainy Weather [44.711384869027775]
ドメインギャップのため、晴れた天候下で訓練された検出モデルは、霧や雨の条件下ではうまく機能しない可能性がある。
霧や雨の天候下での領域ギャップを埋め、オブジェクト検出の性能を向上させるため、ドメイン適応型オブジェクト検出のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-18T23:06:47Z) - MonoTDP: Twin Depth Perception for Monocular 3D Object Detection in
Adverse Scenes [49.21187418886508]
本論文は,モノTDP(MonoTDP)と呼ばれる悪シーンにおける2つの深度を知覚するモノクル3次元検出モデルを提案する。
まず、制御不能な気象条件を扱うモデルを支援するための適応学習戦略を導入し、様々な劣化要因による劣化を著しく抑制する。
そこで本研究では, シーン深度と物体深度を同時に推定する新たな2つの深度認識モジュールを提案する。
論文 参考訳(メタデータ) (2023-05-18T13:42:02Z) - DADFNet: Dual Attention and Dual Frequency-Guided Dehazing Network for
Video-Empowered Intelligent Transportation [79.18450119567315]
逆の気象条件は、ビデオベースの交通監視に深刻な課題をもたらす。
本稿では,リアルタイム視認性向上のための2つの注意と2つの周波数誘導型脱ハージングネットワーク(DADFNet)を提案する。
論文 参考訳(メタデータ) (2023-04-19T11:55:30Z) - Bridging the View Disparity of Radar and Camera Features for Multi-modal
Fusion 3D Object Detection [6.959556180268547]
本稿では3次元物体検出にミリ波レーダとカメラセンサ融合を用いる方法について述べる。
より優れた特徴表現のための鳥眼ビュー(BEV)における特徴レベル融合を実現する新しい手法を提案する。
論文 参考訳(メタデータ) (2022-08-25T13:21:37Z) - Miti-DETR: Object Detection based on Transformers with Mitigatory
Self-Attention Convergence [17.854940064699985]
本稿では,緩和的自己認識機構を備えたトランスフォーマーアーキテクチャを提案する。
Miti-DETRは、各注意層の入力をそのレイヤの出力に予約し、「非注意」情報が注意伝播に関与するようにします。
Miti-DETRは、既存のDETRモデルに対する平均検出精度と収束速度を大幅に向上させる。
論文 参考訳(メタデータ) (2021-12-26T03:23:59Z) - Meta-UDA: Unsupervised Domain Adaptive Thermal Object Detection using
Meta-Learning [64.92447072894055]
赤外線(IR)カメラは、照明条件や照明条件が悪ければ頑丈である。
既存のUDA手法を改善するためのアルゴリズムメタ学習フレームワークを提案する。
KAISTおよびDSIACデータセットのための最先端熱検出器を作成した。
論文 参考訳(メタデータ) (2021-10-07T02:28:18Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
ドメイン適応プロセス中に関心のある小さなオブジェクトの情報を保存するために,事前の意味分類を用いたサイクガンに基づくbevドメイン適応法を提案する。
生成したBEVの品質は,KITTI 3D Object Detection Benchmarkの最先端3Dオブジェクト検出フレームワークを用いて評価されている。
論文 参考訳(メタデータ) (2021-04-22T12:47:37Z) - DA-DETR: Domain Adaptive Detection Transformer with Information Fusion [53.25930448542148]
DA-DETRは、ラベル付きソースドメインからラベルなしターゲットドメインへの効果的な転送のための情報融合を導入するドメイン適応型オブジェクト検出変換器である。
本稿では,CNN機能とトランスフォーマー機能を融合した新しいCNN-Transformer Blender(CTBlender)を提案する。
CTBlenderはTransformer機能を使用して、高レベルの意味情報と低レベルの空間情報が融合した複数のスケールでCNN機能を変調し、正確な物体識別と位置決めを行う。
論文 参考訳(メタデータ) (2021-03-31T13:55:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。