論文の概要: Change State Space Models for Remote Sensing Change Detection
- arxiv url: http://arxiv.org/abs/2504.11080v1
- Date: Tue, 15 Apr 2025 11:25:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:09:47.822789
- Title: Change State Space Models for Remote Sensing Change Detection
- Title(参考訳): リモートセンシングによる変化検出のための状態空間モデル
- Authors: Elman Ghazaei, Erchan Aptoula,
- Abstract要約: 変化状態空間モデルは、バイテンポラル画像間の関連する変化に着目して、変化検出のために特別に設計されている。
提案したモデルは3つのベンチマークデータセットを通じて評価され、計算複雑性のごく一部で、ConvNets、ViTs、Mambaベースのモデルを上回った。
- 参考スコア(独自算出の注目度): 5.770351255180493
- License:
- Abstract: Despite their frequent use for change detection, both ConvNets and Vision transformers (ViT) exhibit well-known limitations, namely the former struggle to model long-range dependencies while the latter are computationally inefficient, rendering them challenging to train on large-scale datasets. Vision Mamba, an architecture based on State Space Models has emerged as an alternative addressing the aforementioned deficiencies and has been already applied to remote sensing change detection, though mostly as a feature extracting backbone. In this article the Change State Space Model is introduced, that has been specifically designed for change detection by focusing on the relevant changes between bi-temporal images, effectively filtering out irrelevant information. By concentrating solely on the changed features, the number of network parameters is reduced, enhancing significantly computational efficiency while maintaining high detection performance and robustness against input degradation. The proposed model has been evaluated via three benchmark datasets, where it outperformed ConvNets, ViTs, and Mamba-based counterparts at a fraction of their computational complexity. The implementation will be made available at https://github.com/Elman295/CSSM upon acceptance.
- Abstract(参考訳): 変更検出に頻繁に使用されるにもかかわらず、ConvNetsとVit(Vit)はどちらも有名な制限を示しており、例えば、長距離依存のモデル化に苦戦し、後者は計算的に非効率であり、大規模なデータセットのトレーニングを困難にしている。
状態空間モデルに基づくアーキテクチャであるVision Mambaは、前述の欠陥に対処する代替として登場し、主にバックボーンを抽出する機能として、リモートセンシング変更検出にすでに適用されている。
本稿では,バイテンポラル画像間の関連的な変化に着目し,無関係な情報を効果的にフィルタリングすることで,変化検出のために特別に設計された変化状態空間モデルを紹介する。
変化した特徴のみに集中することにより、ネットワークパラメータの数を削減し、高い検出性能と入力劣化に対する堅牢性を保ちながら、計算効率を大幅に向上する。
提案したモデルは3つのベンチマークデータセットを通じて評価され、計算複雑性のごく一部で、ConvNets、ViTs、Mambaベースのモデルを上回った。
実装は https://github.com/Elman295/CSSM で受け入れられる。
関連論文リスト
- ChangeViT: Unleashing Plain Vision Transformers for Change Detection [3.582733645632794]
ChangeViTは、大規模な変更のパフォーマンスを高めるために、プレーンなViTバックボーンを採用するフレームワークである。
このフレームワークは3つの一般的な高解像度データセット上で最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-06-18T17:59:08Z) - ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
本稿では,変化領域を正確に推定するために,リッチな文脈情報を利用する効率的な変化検出フレームワークELGC-Netを提案する。
提案するELGC-Netは、リモートセンシング変更検出ベンチマークにおいて、最先端の性能を新たに設定する。
また,ELGC-Net-LWも導入した。
論文 参考訳(メタデータ) (2024-03-26T17:46:25Z) - Cross-Cluster Shifting for Efficient and Effective 3D Object Detection
in Autonomous Driving [69.20604395205248]
本稿では,自律運転における3次元物体検出のための3次元点検出モデルであるShift-SSDを提案する。
我々は、ポイントベース検出器の表現能力を解き放つために、興味深いクロスクラスタシフト操作を導入する。
我々は、KITTI、ランタイム、nuScenesデータセットに関する広範な実験を行い、Shift-SSDの最先端性能を実証した。
論文 参考訳(メタデータ) (2024-03-10T10:36:32Z) - Spatial-Temporal Graph Enhanced DETR Towards Multi-Frame 3D Object Detection [54.041049052843604]
STEMDは,多フレーム3Dオブジェクト検出のためのDETRのようなパラダイムを改良した,新しいエンドツーエンドフレームワークである。
まず、オブジェクト間の空間的相互作用と複雑な時間的依存をモデル化するために、空間的時間的グラフアテンションネットワークを導入する。
最後に、ネットワークが正のクエリと、ベストマッチしない他の非常に類似したクエリを区別することが課題となる。
論文 参考訳(メタデータ) (2023-07-01T13:53:14Z) - Robust representations of oil wells' intervals via sparse attention
mechanism [2.604557228169423]
正規化変換器(Reguformers)と呼ばれる効率的な変換器のクラスを導入する。
私たちの実験の焦点は、石油とガスのデータ、すなわちウェルログにあります。
このような問題に対する我々のモデルを評価するために、20以上の井戸からなるウェルログからなる産業規模のオープンデータセットで作業する。
論文 参考訳(メタデータ) (2022-12-29T09:56:33Z) - When Liebig's Barrel Meets Facial Landmark Detection: A Practical Model [87.25037167380522]
正確で、堅牢で、効率的で、一般化可能で、エンドツーエンドのトレーニングが可能なモデルを提案する。
精度を向上させるために,2つの軽量モジュールを提案する。
DQInitは、インプットからデコーダのクエリを動的に初期化し、複数のデコーダ層を持つものと同じ精度でモデルを実現する。
QAMemは、共有するクエリではなく、それぞれのクエリに別々のメモリ値を割り当てることで、低解像度のフィーチャーマップ上のクエリの識別能力を高めるように設計されている。
論文 参考訳(メタデータ) (2021-05-27T13:51:42Z) - Transformers Solve the Limited Receptive Field for Monocular Depth
Prediction [82.90445525977904]
畳み込みニューラルネットワークとトランスの両方の恩恵を受けるアーキテクチャであるTransDepthを提案します。
連続ラベルを含む画素単位での予測問題にトランスフォーマーを適用する最初の論文である。
論文 参考訳(メタデータ) (2021-03-22T18:00:13Z) - Efficient Transformer based Method for Remote Sensing Image Change
Detection [17.553240434628087]
シーン内のオブジェクトの複雑さのため、高解像度なリモートセンシングcdは依然として困難である。
空間時間領域内のコンテキストを効率的に効果的にモデル化するためのバイテンポラル画像変換器(BiT)を提案する。
BiTベースのモデルは、計算コストとモデルパラメータのわずか3倍のコストで純粋に畳み込みベースラインを著しく上回る。
論文 参考訳(メタデータ) (2021-02-27T13:08:46Z) - DecAug: Augmenting HOI Detection via Decomposition [54.65572599920679]
現在のアルゴリズムでは、データセット内のトレーニングサンプルやカテゴリの不均衡が不足している。
本稿では,HOI検出のためのDECAugと呼ばれる効率的かつ効率的なデータ拡張手法を提案する。
実験の結果,V-COCOおよびHICODETデータセットの3.3mAPと1.6mAPの改善が得られた。
論文 参考訳(メタデータ) (2020-10-02T13:59:05Z) - DASNet: Dual attentive fully convolutional siamese networks for change
detection of high resolution satellite images [17.839181739760676]
研究の目的は、関心の変化情報を識別し、無関係な変更情報を干渉要因としてフィルタリングすることである。
近年、ディープラーニングの台頭により、変化検出のための新しいツールが提供され、目覚ましい結果が得られた。
我々は,高解像度画像における変化検出のための新しい手法,すなわち,二重注意型完全畳み込みシームズネットワーク(DASNet)を提案する。
論文 参考訳(メタデータ) (2020-03-07T16:57:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。