Optimal control of geometric phase in pairs of interacting atoms traveling along two-dimensional closed paths
- URL: http://arxiv.org/abs/2504.11267v1
- Date: Tue, 15 Apr 2025 15:06:40 GMT
- Title: Optimal control of geometric phase in pairs of interacting atoms traveling along two-dimensional closed paths
- Authors: Omar Morandi,
- Abstract summary: We propose a scheme inducing a non-trivial Aharonov-Anandan geometric phase in pairs of atoms interacting via dipole-dipole potential.<n>Our protocol relies on mobile optical trap technology and consists of steering a single atom along a closed loop.<n>The stability of our scheme in the presence of noise or experimental imperfections is discussed.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Universal quantum gates whose operation depends on the manipulation of the geometric phase of atomic systems are promising candidates for implementation of quantum computing. We propose a scheme inducing a non-trivial Aharonov-Anandan geometric phase in pairs of atoms interacting via dipole-dipole potential. Our protocol relies on mobile optical trap technology and consists of steering a single atom along a closed loop. The trajectory of the atom is controlled by a mobile optical trap, and the shape of the path is designed by applying an optimal control procedure. The geometric phase is generated as a residual of the two-atom entanglement induced by the dipole-dipole interaction. The stability of our scheme in the presence of noise or experimental imperfections is discussed.
Related papers
- Strongly Confined Atomic Excitation Localization in a Weakly-Driven Atom-Waveguide Interface [4.608193506134334]
An atomic array coupled to a photonic crystal waveguide forms a strongly coupled quantum interface.
We study its steady-state distribution when the incident fields drive the atoms from both sides at asymmetric angles.
We also consider a defect-driving scheme, where a third zone is created by undriven atoms under symmetric travelling phases.
arXiv Detail & Related papers (2024-11-21T13:04:22Z) - Action formalism for geometric phases from self-closing quantum
trajectories [55.2480439325792]
We study the geometric phase of a subset of self-closing trajectories induced by a continuous Gaussian measurement of a single qubit system.
We show that the geometric phase of the most likely trajectories undergoes a topological transition for self-closing trajectories as a function of the measurement strength parameter.
arXiv Detail & Related papers (2023-12-22T15:20:02Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Direct observation of geometric phase in dynamics around a conical
intersection [0.0]
We experimentally observe geometric-phase interference in the dynamics of a wavepacket travelling around an engineered conical intersection.
We develop a technique to reconstruct the two-dimensional wavepacket densities of a trapped ion.
Experiments agree with the theoretical model, demonstrating the ability of analog quantum simulators to accurately describe nuclear quantum effects.
arXiv Detail & Related papers (2022-11-14T13:00:13Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Coherent Atom Transport via Enhanced Shortcuts to Adiabaticity:
Double-Well Optical Lattice [0.0]
We study fast atomic transport in a moving em double-well optical lattice.
We use two classes of quantum-control methods: shortcuts to adiabaticity (STA) and enhanced STA.
This study has direct implications for neutral-atom quantum computing.
arXiv Detail & Related papers (2021-12-28T08:39:49Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Tunable directional emission and collective dissipation with quantum
metasurfaces [62.997667081978825]
Subradiant excitations propagate through the atomic array with very long lifetimes.
We demonstrate that one can harness these excitations to obtain tunable directional emission patterns.
We also benchmark how these directional emission patterns translate into collective, anisotropic dissipative couplings.
arXiv Detail & Related papers (2021-07-01T14:26:33Z) - Discontinuous Galerkin method with Voronoi partitioning for Quantum
Simulation of Chemistry [1.5301252700705212]
We extend the discontinuous Galerkin procedure to be applicable to molecular and crystalline systems of arbitrary geometry.
We investigate the performance, at the mean-field and correlated levels, with quasi-1D, 2D and 3D partitions using hydrogen chains, H$_4$, CH$_4$ as examples.
arXiv Detail & Related papers (2020-10-31T21:45:53Z) - Orbital angular momentum interference of trapped matter waves [0.0]
We introduce a matter wave interference scheme based on the quantization of orbital angular momentum in a ring trap.
We argue that orbital angular momentum interferometry offers a versatile platform for quantum coherent experiments with cold atoms and Bose-Einstein condensates.
arXiv Detail & Related papers (2020-06-08T11:44:01Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.