論文の概要: Automated Python Translation
- arxiv url: http://arxiv.org/abs/2504.11290v1
- Date: Tue, 15 Apr 2025 15:30:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:10:31.526470
- Title: Automated Python Translation
- Title(参考訳): Pythonの自動翻訳
- Authors: Joshua Otten, Antonios Anastasopoulos, Kevin Moran,
- Abstract要約: 我々は、Pythonの自然なモダリティを他の人間の言語に自動的に翻訳するタスクを紹介します。
これはこれらの形式の短縮性を考えると、ユニークな挑戦である。
我々は、Pythonを他のヒューマン言語に翻訳する自動パイプラインを作成します。
- 参考スコア(独自算出の注目度): 27.835184325945164
- License:
- Abstract: Python is one of the most commonly used programming languages in industry and education. Its English keywords and built-in functions/modules allow it to come close to pseudo-code in terms of its readability and ease of writing. However, those who do not speak English may not experience these advantages. In fact, they may even be hindered in their ability to understand Python code, as the English nature of its terms creates an additional layer of overhead. To that end, we introduce the task of automatically translating Python's natural modality (keywords, error types, identifiers, etc.) into other human languages. This presents a unique challenge, considering the abbreviated nature of these forms, as well as potential untranslatability of advanced mathematical/programming concepts across languages. We therefore create an automated pipeline to translate Python into other human languages, comparing strategies using machine translation and large language models. We then use this pipeline to acquire translations from five common Python libraries (pytorch, pandas, tensorflow, numpy, and random) in seven languages, and do a quality test on a subset of these terms in French, Greek, and Bengali. We hope this will provide a clearer path forward towards creating a universal Python, accessible to anyone regardless of nationality or language background.
- Abstract(参考訳): Pythonは、業界や教育でよく使われているプログラミング言語の1つである。
英語のキーワードと組み込み関数/モジュールは、読みやすさと書きやすさの観点から擬似コードに近づきやすい。
しかし、英語を話せない人はこれらの利点を享受できないかもしれない。
実のところ、Pythonのコードを理解する能力が妨げられているかもしれない。
そこで我々は,Pythonの自然なモダリティ(キーワード,エラータイプ,識別子など)を他の人間の言語に自動的に翻訳するタスクを紹介した。
このことは、これらの形式の短縮性や、言語間の高度な数学的/プログラミング概念の潜在的な非翻訳性を考えると、独特な挑戦である。
そこで我々は,Pythonを他の言語に翻訳する自動パイプラインを作成し,機械翻訳と大規模言語モデルを用いた戦略を比較した。
次にこのパイプラインを使用して、7つの言語で5つの一般的なPythonライブラリ(pytorch, pandas, tensorflow, numpy, random)から翻訳を取得し、これらの用語のサブセットをフランス語、ギリシャ語、ベンガル語で品質テストを行います。
国籍や言語のバックグラウンドに関わらず、誰でもアクセスできるユニバーサルPythonを作るための、より明確な道筋を提供することを期待しています。
関連論文リスト
- Effective LLM-Driven Code Generation with Pythoness [0.0]
Pythonessは、大きな言語モデル(LLM)を使用したコード生成のための組み込みドメイン固有言語である。
Pythonessでは、関数やクラス、プログラム全体を記述する際に、開発者は振る舞い仕様のレベルで動作します。
Pythonessは、テストとコード生成の組み合わせをうまく利用して、仕様のみよりも高品質なコードを生成することができることを示す。
論文 参考訳(メタデータ) (2025-01-03T23:14:46Z) - CRUXEval-X: A Benchmark for Multilingual Code Reasoning, Understanding and Execution [50.7413285637879]
CRUXEVAL-Xコード推論ベンチマークには19のプログラミング言語が含まれている。
各言語に対して少なくとも600人の被験者で構成され、合計19Kのコンテンツ一貫性テストがある。
Pythonでのみトレーニングされたモデルでさえ、他の言語で34.4%のPass@1を達成することができる。
論文 参考訳(メタデータ) (2024-08-23T11:43:00Z) - Towards Identifying Code Proficiency through the Analysis of Python Textbooks [7.381102801726683]
目的は、開発者がソースコードの一部を理解する必要がある熟練度を測定することである。
専門家の意見や開発者調査に大きく依存した以前の試みは、かなりの相違を招いた。
本稿では,Python プログラミング教科書の体系的解析を通じて,Python の能力レベルを同定する手法を提案する。
論文 参考訳(メタデータ) (2024-08-05T06:37:10Z) - Automatic Generation of Python Programs Using Context-Free Grammars [0.1227734309612871]
TinyPy Generatorは、文脈自由文法を使ってランダムなPythonプログラムを生成するツールである。
私たちのシステムは、さまざまなレベルの複雑さを持つコードを生成するために、カスタムプロダクションルールを使用します。
TinyPy Generatorは機械学習の分野で有用であり、Python言語モデルをトレーニングするための大量のPythonコードを生成することができる。
論文 参考訳(メタデータ) (2024-03-11T08:25:52Z) - Python is Not Always the Best Choice: Embracing Multilingual Program of Thoughts [51.49688654641581]
本稿では,多言語からの強みと多様性を生かしたMultiPoTというタスクとモデル非依存のアプローチを提案する。
実験の結果、Python Self-Consistencyを著しく上回ることがわかった。
特にMultiPoTはChatGPT(gpt-3.5-turbo-0701)で平均4.6%以上の改善を実現している。
論文 参考訳(メタデータ) (2024-02-16T13:48:06Z) - Natural Language Embedded Programs for Hybrid Language Symbolic Reasoning [84.12154024070024]
本研究では,数学・記号的推論,自然言語理解,後続の課題に対処するための統合フレームワークとして,自然言語組み込みプログラム(NLEP)を提案する。
我々のアプローチは,構造化知識の自然言語表現を含むデータ構造上の関数を定義する完全なPythonプログラムを生成するよう,言語モデルに促す。
Pythonインタープリタが生成されたコードを実行し、出力をプリントする。
論文 参考訳(メタデータ) (2023-09-19T17:54:21Z) - MCoNaLa: A Benchmark for Code Generation from Multiple Natural Languages [76.93265104421559]
英語以外の自然言語コマンドからコード生成をベンチマークします。
スペイン語,日本語,ロシア語の3言語で896個のNLコードペアを注釈した。
難易度はこれらの3つの言語によって異なるが、全てのシステムは英語にかなり遅れている。
論文 参考訳(メタデータ) (2022-03-16T04:21:50Z) - Stanza: A Python Natural Language Processing Toolkit for Many Human
Languages [44.8226642800919]
我々は,オープンソースのPython自然言語処理ツールキットであるStanzaを紹介した。
Stanzaは、トークン化、マルチワードトークン拡張、レムマティゼーション、パート・オブ・音声、形態的特徴タグ付けなど、テキスト分析のための言語に依存しない完全なニューラルネットワークを備えている。
我々は、Universal Dependencies Treebanksや他の多言語コーパスを含む、合計112のデータセットでStanzaをトレーニングしました。
論文 参考訳(メタデータ) (2020-03-16T09:05:53Z) - OPFython: A Python-Inspired Optimum-Path Forest Classifier [68.8204255655161]
本稿では,OPFythonと表記されるPythonベースのOptimum-Path Forestフレームワークを提案する。
OPFythonはPythonベースのライブラリなので、C言語よりもフレンドリーな環境とプロトタイピングの作業スペースを提供する。
論文 参考訳(メタデータ) (2020-01-28T15:46:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。