論文の概要: Effective LLM-Driven Code Generation with Pythoness
- arxiv url: http://arxiv.org/abs/2501.02138v1
- Date: Fri, 03 Jan 2025 23:14:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:09:37.467534
- Title: Effective LLM-Driven Code Generation with Pythoness
- Title(参考訳): Pythonによる効率的なLLM駆動コード生成
- Authors: Kyla H. Levin, Kyle Gwilt, Emery D. Berger, Stephen N. Freund,
- Abstract要約: Pythonessは、大きな言語モデル(LLM)を使用したコード生成のための組み込みドメイン固有言語である。
Pythonessでは、関数やクラス、プログラム全体を記述する際に、開発者は振る舞い仕様のレベルで動作します。
Pythonessは、テストとコード生成の組み合わせをうまく利用して、仕様のみよりも高品質なコードを生成することができることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The advent of large language models (LLMs) has paved the way for a new era of programming tools with both significant capabilities and risks, as the generated code lacks guarantees of correctness and reliability. Developers using LLMs currently face the difficult task of optimizing, integrating, and maintaining code generated by AI. We propose an embedded domain-specific language (DSL), Pythoness, to address those challenges. In Pythoness, developers program with LLMs at a higher level of abstraction. Rather than interacting directly with generated code, developers using Pythoness operate at the level of behavioral specifications when writing functions, classes, or an entire program. These specifications can take the form of unit tests and property-based tests, which may be expressed formally or in natural language. Guided by these specifications, Pythoness generates code that both passes the tests and can be continuously checked during execution. We posit that the Pythoness approach lets developers harness the full potential of LLMs for code generation while substantially mitigating their inherent risks. We describe our current prototype implementation of Pythoness and demonstrate that it can successfully leverage a combination of tests and code generation to yield higher quality code than specifications alone.
- Abstract(参考訳): 大規模言語モデル(LLM)の出現は、生成したコードに正確性と信頼性の保証が欠如していることから、重要な機能とリスクを持った新しいプログラミングツール時代への道を開いた。
LLMを使用する開発者は、AIによって生成されたコードの最適化、統合、保守が難しい課題に直面している。
このような課題に対処するために、組み込みドメイン固有言語(DSL)であるPythonを提案する。
Pythonessでは、開発者はより高い抽象化レベルでLLMを使ってプログラムする。
生成されたコードと直接対話するのではなく、Pythonを使用する開発者は、関数やクラス、プログラム全体を記述する際に、振る舞い仕様のレベルで動作します。
これらの仕様は単体テストとプロパティベースのテストの形式を取ることができ、形式的あるいは自然言語で表現することができる。
これらの仕様でガイドされたPythonessは、両方がテストに合格し、実行中に継続的にチェックできるコードを生成する。
Pythonessのアプローチは、開発者がコード生成にLLMの潜在能力を最大限活用しつつ、その固有のリスクを大幅に軽減します。
我々はPythonessの現在のプロトタイプ実装を説明し、テストとコード生成の組み合わせをうまく活用し、仕様のみよりも高品質なコードが得られることを示した。
関連論文リスト
- CRUXEval-X: A Benchmark for Multilingual Code Reasoning, Understanding and Execution [50.7413285637879]
CRUXEVAL-Xコード推論ベンチマークには19のプログラミング言語が含まれている。
各言語に対して少なくとも600人の被験者で構成され、合計19Kのコンテンツ一貫性テストがある。
Pythonでのみトレーニングされたモデルでさえ、他の言語で34.4%のPass@1を達成することができる。
論文 参考訳(メタデータ) (2024-08-23T11:43:00Z) - Automatic Generation of Python Programs Using Context-Free Grammars [0.1227734309612871]
TinyPy Generatorは、文脈自由文法を使ってランダムなPythonプログラムを生成するツールである。
私たちのシステムは、さまざまなレベルの複雑さを持つコードを生成するために、カスタムプロダクションルールを使用します。
TinyPy Generatorは機械学習の分野で有用であり、Python言語モデルをトレーニングするための大量のPythonコードを生成することができる。
論文 参考訳(メタデータ) (2024-03-11T08:25:52Z) - Test-Driven Development for Code Generation [0.850206009406913]
大きな言語モデル(LLM)は、問題ステートメントから直接コードスニペットを生成する重要な機能を示している。
本稿では,テスト駆動開発(TDD)をAI支援コード生成プロセスに組み込む方法について検討する。
論文 参考訳(メタデータ) (2024-02-21T04:10:12Z) - Executable Code Actions Elicit Better LLM Agents [76.95566120678787]
この研究は、Pythonコードを使用して、Large Language Model(LLM)エージェントのアクションを統一されたアクション空間(CodeAct)に統合することを提案する。
Pythonインタプリタと統合されたCodeActは、コードアクションを実行し、事前アクションを動的に修正したり、マルチターンインタラクションを通じて新しい観察に新しいアクションを発行することができる。
CodeActのパフォーマンス向上は、解釈可能なコードを実行し、自然言語を使ってユーザとコラボレーションすることで、環境と対話するオープンソースのLLMエージェントを構築する動機となります。
論文 参考訳(メタデータ) (2024-02-01T21:38:58Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - Testing LLMs on Code Generation with Varying Levels of Prompt
Specificity [0.0]
大規模言語モデル (LLM) は、人間のようなテキスト生成と処理を模倣する非並列的な技術を示している。
自然言語のプロンプトを実行可能なコードに変換する可能性は、ソフトウェア開発プラクティスの大きな変化を約束します。
論文 参考訳(メタデータ) (2023-11-10T23:41:41Z) - CAT-LM: Training Language Models on Aligned Code And Tests [19.526181671936243]
テストはソフトウェア開発プロセスにおいて不可欠な部分だ。しかし、テストを書くのに時間がかかり、しばしば無視される。
我々は270億のパラメータを持つGPTスタイルの言語モデルであるAligned Code And Tests Language Model (CAT-LM)を提案する。
論文 参考訳(メタデータ) (2023-10-02T19:52:22Z) - InterCode: Standardizing and Benchmarking Interactive Coding with
Execution Feedback [50.725076393314964]
標準的な強化学習環境として,インタラクティブコーディングの軽量でフレキシブルで使いやすいフレームワークであるInterCodeを紹介した。
私たちのフレームワークは、言語とプラットフォームに依存しない、自己完結型のDocker環境を使用して、安全で再現可能な実行を提供します。
我々は、異なるプロンプト戦略で構成された複数の最先端LLMを評価することにより、InterCodeの生存性をテストベッドとして示す。
論文 参考訳(メタデータ) (2023-06-26T17:59:50Z) - LEVER: Learning to Verify Language-to-Code Generation with Execution [64.36459105535]
本稿では,プログラムの実行結果の検証を学習することで,言語からコードへの生成を改善するシンプルな手法であるLEVERを提案する。
具体的には、LLMからサンプリングされたプログラムが、自然言語入力、プログラム自体とその実行結果に基づいて正しいか否かを判定するために、検証者を訓練する。
LEVER はベースコード LLMs (4.6% から 10.9% まで) を継続的に改善し、それらすべてに対して新しい最先端の結果を得る。
論文 参考訳(メタデータ) (2023-02-16T18:23:22Z) - ReACC: A Retrieval-Augmented Code Completion Framework [53.49707123661763]
本稿では,語彙のコピーと類似したセマンティクスを持つコード参照の両方を検索により活用する検索拡張コード補完フレームワークを提案する。
我々は,Python および Java プログラミング言語のコード補完タスクにおけるアプローチを評価し,CodeXGLUE ベンチマークで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-03-15T08:25:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。