論文の概要: Uncertainty Estimation for Trust Attribution to Speed-of-Sound Reconstruction with Variational Networks
- arxiv url: http://arxiv.org/abs/2504.11307v1
- Date: Tue, 15 Apr 2025 15:48:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:09:37.959526
- Title: Uncertainty Estimation for Trust Attribution to Speed-of-Sound Reconstruction with Variational Networks
- Title(参考訳): 変分ネットワークを用いた音速再構成における信頼度の不確かさ推定
- Authors: Sonia Laguna, Lin Zhang, Can Deniz Bezek, Monika Farkas, Dieter Schweizer, Rahel A. Kubik-Huch, Orcun Goksel,
- Abstract要約: 音速(SoS)は組織の生体力学的特性であり、そのイメージングは診断に有望なバイオマーカーを提供することができる。
本稿では,SoS再建における不確実性を利用して,各獲得フレームの属性を信頼することを提案する。
良性線維腺腫と悪性癌とを鑑別し,乳腺癌鑑別のための自動フレーム選択法について検討した。
- 参考スコア(独自算出の注目度): 4.4514169794746
- License:
- Abstract: Speed-of-sound (SoS) is a biomechanical characteristic of tissue, and its imaging can provide a promising biomarker for diagnosis. Reconstructing SoS images from ultrasound acquisitions can be cast as a limited-angle computed-tomography problem, with Variational Networks being a promising model-based deep learning solution. Some acquired data frames may, however, get corrupted by noise due to, e.g., motion, lack of contact, and acoustic shadows, which in turn negatively affects the resulting SoS reconstructions. We propose to use the uncertainty in SoS reconstructions to attribute trust to each individual acquired frame. Given multiple acquisitions, we then use an uncertainty based automatic selection among these retrospectively, to improve diagnostic decisions. We investigate uncertainty estimation based on Monte Carlo Dropout and Bayesian Variational Inference. We assess our automatic frame selection method for differential diagnosis of breast cancer, distinguishing between benign fibroadenoma and malignant carcinoma. We evaluate 21 lesions classified as BI-RADS~4, which represents suspicious cases for probable malignancy. The most trustworthy frame among four acquisitions of each lesion was identified using uncertainty based criteria. Selecting a frame informed by uncertainty achieved an area under curve of 76% and 80% for Monte Carlo Dropout and Bayesian Variational Inference, respectively, superior to any uncertainty-uninformed baselines with the best one achieving 64%. A novel use of uncertainty estimation is proposed for selecting one of multiple data acquisitions for further processing and decision making.
- Abstract(参考訳): 音速(SoS)は組織の生体力学的特性であり、そのイメージングは診断に有望なバイオマーカーを提供することができる。
超音波取得によるSoS画像の再構成は,有望なモデルベースディープラーニングソリューションとして,限られた角度の計算トモグラフィー問題として利用することができる。
しかし、取得したデータフレームの中には、例えば動き、接触の欠如、音響的影などによってノイズによって劣化するものもある。
本稿では,SoS再建における不確実性を利用して,各獲得したフレームに対する信頼度を評価することを提案する。
複数回の取得を前提として,不確実性に基づく自動選択を振り返り,診断判断の改善に活用する。
モンテカルロ・ドロップアウトとベイズ変分推定に基づく不確実性推定について検討する。
良性線維腺腫と悪性腫瘍を鑑別し,乳癌の鑑別診断のための自動フレーム選択法について検討した。
BI-RADS~4に分類した21の病変について検討した。
病変4例のうち最も信頼できる枠組みは,不確実性基準を用いて同定した。
不確実性によって情報を得るフレームの選択は,モンテカルロ・ドロップアウトとベイズ変量推論の曲線の76%と80%の領域をそれぞれ達成し,不確実性のないベースラインを64%で上回った。
さらなる処理と意思決定のために複数のデータ取得の1つを選択するために、新しい不確実性推定法を提案する。
関連論文リスト
- Deep Bayesian segmentation for colon polyps: Well-calibrated predictions in medical imaging [0.0]
我々は,さまざまなベイズニューラルネットワークを用いて,大腸ポリプ画像のセマンティックセグメンテーションを開発する。
その結果、これらのモデルが、この医療データセットのセグメンテーションにおける最先端のパフォーマンスを提供するだけでなく、正確な不確実性の推定値が得られることがわかった。
論文 参考訳(メタデータ) (2024-07-23T16:13:27Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
磁気共鳴脳画像における運動アーチファクトは重要な問題である。
MR画像の画質評価は,臨床診断に先立って基本的である。
構造類似度指数(SSIM)回帰に基づく自動画像品質評価法が提案されている。
論文 参考訳(メタデータ) (2022-06-14T10:16:54Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
本稿では,病理組織像間でテクスチャを特徴付ける手法を提案する。
2つのHIデータセットに有望な精度で、そのような画像の固有特性を定量化することが可能である。
論文 参考訳(メタデータ) (2022-02-27T02:19:09Z) - Trustworthy Medical Segmentation with Uncertainty Estimation [0.7829352305480285]
本稿では,セグメンテーションニューラルネットワークにおける不確実性定量化のための新しいベイズディープラーニングフレームワークを提案する。
我々は磁気共鳴イメージングとCTによる医用画像分割データについて検討した。
複数のベンチマークデータセットに対する実験により,提案するフレームワークは,最先端セグメンテーションモデルと比較して,ノイズや敵攻撃に対してより堅牢であることが示された。
論文 参考訳(メタデータ) (2021-11-10T22:46:05Z) - Multiple Sclerosis Lesions Identification/Segmentation in Magnetic
Resonance Imaging using Ensemble CNN and Uncertainty Classification [7.260554897161948]
3つの重要な概念に基づくMS病変の同定・分類のための自動フレームワークを提案する。
提案されたフレームワークは、2016年のMSSEGベンチマーク公開データセットでトレーニング、検証、テストされている。
結果も不確実性を示すが、他のレーダとの比較は不可能である。
論文 参考訳(メタデータ) (2021-08-26T13:48:06Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
臨床皮膚画像から機械学習に基づく悪性度予測と病変の同定を検討する。
まず, サブタイプや悪性度に関わらず画像に存在するすべての病変を同定し, その悪性度を推定し, 凝集により, 画像レベルの悪性度も生成する。
論文 参考訳(メタデータ) (2021-04-02T20:52:05Z) - Bayesian Uncertainty Estimation of Learned Variational MRI
Reconstruction [63.202627467245584]
我々は,モデル不連続な不確かさを定量化するベイズ変分フレームワークを提案する。
提案手法はMRIのアンダーサンプを用いた再建術の術後成績を示す。
論文 参考訳(メタデータ) (2021-02-12T18:08:14Z) - Integrating uncertainty in deep neural networks for MRI based stroke
analysis [0.0]
2次元磁気共鳴(MR)画像における脳梗塞の確率を示すベイズ畳み込みニューラルネットワーク(CNN)を提案する。
CNNは511例のコホートで、画像レベルでは95.33%の精度を達成し、非バイエルン人に比べて2%の大幅な改善を示した。
論文 参考訳(メタデータ) (2020-08-13T09:50:17Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Quantifying and Leveraging Predictive Uncertainty for Medical Image
Assessment [13.330243305948278]
本稿では,分類の確率的推定だけでなく,明確な不確実性も学習するシステムを提案する。
我々は,異なる放射線検査による医用画像のあいまいさを考慮に入れることが重要であると論じる。
本実験では, 予測不確実性に基づくサンプルの拒絶が, 様々なタスクにおけるROC-AUCを大幅に改善できることを実証した。
論文 参考訳(メタデータ) (2020-07-08T16:47:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。