SO-DETR: Leveraging Dual-Domain Features and Knowledge Distillation for Small Object Detection
- URL: http://arxiv.org/abs/2504.11470v1
- Date: Fri, 11 Apr 2025 13:47:37 GMT
- Title: SO-DETR: Leveraging Dual-Domain Features and Knowledge Distillation for Small Object Detection
- Authors: Huaxiang Zhang, Hao Zhang, Aoran Mei, Zhongxue Gan, Guo-Niu Zhu,
- Abstract summary: This paper proposes an efficient model, Small Object Detection Transformer (SO-DETR)<n>The model comprises three key components: a dual-domain hybrid encoder, an enhanced query selection mechanism, and a knowledge distillation strategy.<n> Experimental results on the VisDrone 2019-DET and UAVVaste datasets demonstrate that SO-DETR outperforms existing methods with similar computational demands.
- Score: 15.03203094818889
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detection Transformer-based methods have achieved significant advancements in general object detection. However, challenges remain in effectively detecting small objects. One key difficulty is that existing encoders struggle to efficiently fuse low-level features. Additionally, the query selection strategies are not effectively tailored for small objects. To address these challenges, this paper proposes an efficient model, Small Object Detection Transformer (SO-DETR). The model comprises three key components: a dual-domain hybrid encoder, an enhanced query selection mechanism, and a knowledge distillation strategy. The dual-domain hybrid encoder integrates spatial and frequency domains to fuse multi-scale features effectively. This approach enhances the representation of high-resolution features while maintaining relatively low computational overhead. The enhanced query selection mechanism optimizes query initialization by dynamically selecting high-scoring anchor boxes using expanded IoU, thereby improving the allocation of query resources. Furthermore, by incorporating a lightweight backbone network and implementing a knowledge distillation strategy, we develop an efficient detector for small objects. Experimental results on the VisDrone-2019-DET and UAVVaste datasets demonstrate that SO-DETR outperforms existing methods with similar computational demands. The project page is available at https://github.com/ValiantDiligent/SO_DETR.
Related papers
- Efficient Feature Fusion for UAV Object Detection [9.632727117779178]
Small objects, in particular, occupy small portions of images, making their accurate detection difficult.<n>Existing multi-scale feature fusion methods address these challenges by aggregating features across different resolutions.<n>We propose a novel feature fusion framework specifically designed for UAV object detection tasks.
arXiv Detail & Related papers (2025-01-29T20:39:16Z) - Efficient Oriented Object Detection with Enhanced Small Object Recognition in Aerial Images [2.9138705529771123]
We present a novel enhancement to the YOLOv8 model, tailored for oriented object detection tasks.<n>Our model features a wavelet transform-based C2f module for capturing associative features and an Adaptive Scale Feature Pyramid (ASFP) module that leverages P2 layer details.<n>Our approach provides a more efficient architectural design than DecoupleNet, which has 23.3M parameters, all while maintaining detection accuracy.
arXiv Detail & Related papers (2024-12-17T05:45:48Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Spatial-Temporal Graph Enhanced DETR Towards Multi-Frame 3D Object Detection [54.041049052843604]
We present STEMD, a novel end-to-end framework that enhances the DETR-like paradigm for multi-frame 3D object detection.
First, to model the inter-object spatial interaction and complex temporal dependencies, we introduce the spatial-temporal graph attention network.
Finally, it poses a challenge for the network to distinguish between the positive query and other highly similar queries that are not the best match.
arXiv Detail & Related papers (2023-07-01T13:53:14Z) - Hierarchical Point Attention for Indoor 3D Object Detection [111.04397308495618]
This work proposes two novel attention operations as generic hierarchical designs for point-based transformer detectors.
First, we propose Multi-Scale Attention (MS-A) that builds multi-scale tokens from a single-scale input feature to enable more fine-grained feature learning.
Second, we propose Size-Adaptive Local Attention (Local-A) with adaptive attention regions for localized feature aggregation within bounding box proposals.
arXiv Detail & Related papers (2023-01-06T18:52:12Z) - Towards Efficient Use of Multi-Scale Features in Transformer-Based
Object Detectors [49.83396285177385]
Multi-scale features have been proven highly effective for object detection but often come with huge and even prohibitive extra computation costs.
We propose Iterative Multi-scale Feature Aggregation (IMFA) -- a generic paradigm that enables efficient use of multi-scale features in Transformer-based object detectors.
arXiv Detail & Related papers (2022-08-24T08:09:25Z) - Efficient Person Search: An Anchor-Free Approach [86.45858994806471]
Person search aims to simultaneously localize and identify a query person from realistic, uncropped images.
To achieve this goal, state-of-the-art models typically add a re-id branch upon two-stage detectors like Faster R-CNN.
In this work, we present an anchor-free approach to efficiently tackling this challenging task, by introducing the following dedicated designs.
arXiv Detail & Related papers (2021-09-01T07:01:33Z) - Oriented Object Detection with Transformer [51.634913687632604]
We implement Oriented Object DEtection with TRansformer ($bf O2DETR$) based on an end-to-end network.
We design a simple but highly efficient encoder for Transformer by replacing the attention mechanism with depthwise separable convolution.
Our $rm O2DETR$ can be another new benchmark in the field of oriented object detection, which achieves up to 3.85 mAP improvement over Faster R-CNN and RetinaNet.
arXiv Detail & Related papers (2021-06-06T14:57:17Z) - CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented
Object Detection in Remote Sensing Images [0.9462808515258465]
In this paper, we discuss the role of discriminative features in object detection.
We then propose a Critical Feature Capturing Network (CFC-Net) to improve detection accuracy.
We show that our method achieves superior detection performance compared with many state-of-the-art approaches.
arXiv Detail & Related papers (2021-01-18T02:31:09Z) - Learning to Generate Content-Aware Dynamic Detectors [62.74209921174237]
We introduce a newpective of designing efficient detectors, which is automatically generating sample-adaptive model architecture.
We introduce a course-to-fine strat-egy tailored for object detection to guide the learning of dynamic routing.
Experiments on MS-COCO dataset demonstrate that CADDet achieves 1.8 higher mAP with 10% fewer FLOPs compared with vanilla routing.
arXiv Detail & Related papers (2020-12-08T08:05:20Z) - AFD-Net: Adaptive Fully-Dual Network for Few-Shot Object Detection [8.39479809973967]
Few-shot object detection (FSOD) aims at learning a detector that can fast adapt to previously unseen objects with scarce examples.
Existing methods solve this problem by performing subtasks of classification and localization utilizing a shared component.
We present that a general few-shot detector should consider the explicit decomposition of two subtasks, as well as leveraging information from both of them to enhance feature representations.
arXiv Detail & Related papers (2020-11-30T10:21:32Z) - Representation Sharing for Fast Object Detector Search and Beyond [38.18583590914755]
We propose Fast And Diverse (FAD) to better explore the optimal configuration of receptive fields and convolution types in the sub-networks for one-stage detectors.
FAD achieves prominent improvements on two types of one-stage detectors with various backbones.
arXiv Detail & Related papers (2020-07-23T15:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.