TransitReID: Transit OD Data Collection with Occlusion-Resistant Dynamic Passenger Re-Identification
- URL: http://arxiv.org/abs/2504.11500v1
- Date: Tue, 15 Apr 2025 02:09:02 GMT
- Title: TransitReID: Transit OD Data Collection with Occlusion-Resistant Dynamic Passenger Re-Identification
- Authors: Kaicong Huang, Talha Azfar, Jack Reilly, Ruimin Ke,
- Abstract summary: Transit Origin-Destination (OD) data are essential for transit planning, particularly in route optimization and demand-responsive paratransit systems.<n>Traditional methods, such as manual surveys, are costly and inefficient, while Bluetooth and WiFi-based approaches require passengers to carry specific devices.<n>We propose TransitReID, a novel framework for individual-level transit OD data collection.
- Score: 3.5323691899538128
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transit Origin-Destination (OD) data are essential for transit planning, particularly in route optimization and demand-responsive paratransit systems. Traditional methods, such as manual surveys, are costly and inefficient, while Bluetooth and WiFi-based approaches require passengers to carry specific devices, limiting data coverage. On the other hand, most transit vehicles are equipped with onboard cameras for surveillance, offering an opportunity to repurpose them for edge-based OD data collection through visual person re-identification (ReID). However, such approaches face significant challenges, including severe occlusion and viewpoint variations in transit environments, which greatly reduce matching accuracy and hinder their adoption. Moreover, designing effective algorithms that can operate efficiently on edge devices remains an open challenge. To address these challenges, we propose TransitReID, a novel framework for individual-level transit OD data collection. TransitReID consists of two key components: (1) An occlusion-robust ReID algorithm featuring a variational autoencoder guided region-attention mechanism that adaptively focuses on visible body regions through reconstruction loss-optimized weight allocation; and (2) a Hierarchical Storage and Dynamic Matching (HSDM) mechanism specifically designed for efficient and robust transit OD matching which balances storage, speed, and accuracy. Additionally, a multi-threaded design supports near real-time operation on edge devices, which also ensuring privacy protection. We also introduce a ReID dataset tailored for complex bus environments to address the lack of relevant training data. Experimental results demonstrate that TransitReID achieves state-of-the-art performance in ReID tasks, with an accuracy of approximately 90\% in bus route simulations.
Related papers
- Optimal Transport Adapter Tuning for Bridging Modality Gaps in Few-Shot Remote Sensing Scene Classification [80.83325513157637]
Few-Shot Remote Sensing Scene Classification (FS-RSSC) presents the challenge of classifying remote sensing images with limited labeled samples.<n>We propose a novel Optimal Transport Adapter Tuning (OTAT) framework aimed at constructing an ideal Platonic representational space.
arXiv Detail & Related papers (2025-03-19T07:04:24Z) - DriveTransformer: Unified Transformer for Scalable End-to-End Autonomous Driving [62.62464518137153]
DriveTransformer is a simplified E2E-AD framework for the ease of scaling up.<n>It is composed of three unified operations: task self-attention, sensor cross-attention, temporal cross-attention.<n>It achieves state-of-the-art performance in both simulated closed-loop benchmark Bench2Drive and real world open-loop benchmark nuScenes with high FPS.
arXiv Detail & Related papers (2025-03-07T11:41:18Z) - Towards Intelligent Transportation with Pedestrians and Vehicles In-the-Loop: A Surveillance Video-Assisted Federated Digital Twin Framework [62.47416496137193]
We propose a surveillance video assisted federated digital twin (SV-FDT) framework to empower ITSs with pedestrians and vehicles in-the-loop.<n>The architecture consists of three layers: (i) the end layer, which collects traffic surveillance videos from multiple sources; (ii) the edge layer, responsible for semantic segmentation-based visual understanding, twin agent-based interaction modeling, and local digital twin system (LDTS) creation in local regions; and (iii) the cloud layer, which integrates LDTSs across different regions to construct a global DT model in realtime.
arXiv Detail & Related papers (2025-03-06T07:36:06Z) - AirTag, You're It: Reverse Logistics and Last Mile Dynamics [0.0]
This study addresses challenges in reverse logistics, particularly in disaster relief scenarios where infrastructure disruptions demand adaptive solutions.<n>Using 20 Apple AirTags embedded in packages, this research provides empirical insights into logistical flows, capturing granular spatial and temporal data through Bluetooth LE (BLE) 5 trackers integrated with the Apple Find My network.<n>These trackers demonstrated their value in monitoring dynamic cargo movements, enabling real-time adjustments in mobile hub placement and route optimization, particularly in disaster relief contexts like Hurricane Helene.
arXiv Detail & Related papers (2025-02-03T02:21:23Z) - Adaptive Data Transport Mechanism for UAV Surveillance Missions in Lossy Environments [2.700610024690147]
Unmanned Aerial Vehicles (UAVs) play an increasingly critical role in Intelligence, Surveillance, and Reconnaissance (ISR) missions.
This paper offers an alternative AI-driven scheduling policy that prioritizes selecting regions of the image that significantly contributes to the mission objective.
arXiv Detail & Related papers (2024-09-30T18:22:58Z) - DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
We propose an ego-centric fully sparse paradigm, named DiFSD, for end-to-end self-driving.<n>Specifically, DiFSD mainly consists of sparse perception, hierarchical interaction and iterative motion planner.<n>Experiments conducted on nuScenes and Bench2Drive datasets demonstrate the superior planning performance and great efficiency of DiFSD.
arXiv Detail & Related papers (2024-09-15T15:55:24Z) - DSDFormer: An Innovative Transformer-Mamba Framework for Robust High-Precision Driver Distraction Identification [23.05821759499963]
Driver distraction remains a leading cause of traffic accidents, posing a critical threat to road safety globally.
We propose DSDFormer, a framework that integrates the strengths of Transformer and Mamba architectures.
We also introduce Temporal Reasoning Confident Learning (TRCL), an unsupervised approach that refines noisy labels by leveragingtemporal correlations in video.
arXiv Detail & Related papers (2024-09-09T13:16:15Z) - Leveraging Driver Field-of-View for Multimodal Ego-Trajectory Prediction [69.29802752614677]
RouteFormer is a novel ego-trajectory prediction network combining GPS data, environmental context, and the driver's field-of-view.<n>To tackle data scarcity and enhance diversity, we introduce GEM, a dataset of urban driving scenarios enriched with synchronized driver field-of-view and gaze data.
arXiv Detail & Related papers (2023-12-13T23:06:30Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Scalable Vehicle Re-Identification via Self-Supervision [66.2562538902156]
Vehicle Re-Identification is one of the key elements in city-scale vehicle analytics systems.
Many state-of-the-art solutions for vehicle re-id mostly focus on improving the accuracy on existing re-id benchmarks and often ignore computational complexity.
We propose a simple yet effective hybrid solution empowered by self-supervised training which only uses a single network during inference time.
arXiv Detail & Related papers (2022-05-16T12:14:42Z) - On the Role of Multi-Objective Optimization to the Transit Network
Design Problem [0.7734726150561088]
This work shows that single and multi objective stances can be synergistically combined to better answer the transit network design problem (TNDP)
As a guiding case study, the solution is applied to the multimodal public transport network in the city of Lisbon, Portugal.
The proposed TNDP optimization proved to improve results, with reductions in objective functions of up to 28.3%.
arXiv Detail & Related papers (2022-01-27T16:22:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.