SDR-GAIN: A High Real-Time Occluded Pedestrian Pose Completion Method for Autonomous Driving
- URL: http://arxiv.org/abs/2306.03538v5
- Date: Fri, 11 Jul 2025 04:48:14 GMT
- Title: SDR-GAIN: A High Real-Time Occluded Pedestrian Pose Completion Method for Autonomous Driving
- Authors: Honghao Fu, Yongli Gu, Yidong Yan, Yilang Shen, Yiwen Wu, Libo Sun,
- Abstract summary: We propose a novel real-time occluded pedestrian pose completion framework Separation and Dimensionality Reduction-based Generative Adrial Imputation Nets (SDR-GAIN)<n>SDR-GAIN aims to learn human pose directly from the numerical distribution of keypoint coordinates and interpolate missing positions.<n>Experiments conducted on the COCO and JAAD datasets demonstrate that SDR-GAIN surpasses conventional machine learning and Transformer-based missing data algorithms.
- Score: 2.6663666678221376
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the advancement of vision-based autonomous driving technology, pedestrian detection have become an important component for improving traffic safety and driving system robustness. Nevertheless, in complex traffic scenarios, conventional pose estimation approaches frequently fail to accurately reconstruct occluded keypoints, primarily due to obstructions caused by vehicles, vegetation, or architectural elements. To address this issue, we propose a novel real-time occluded pedestrian pose completion framework termed Separation and Dimensionality Reduction-based Generative Adversarial Imputation Nets (SDR-GAIN). Unlike previous approaches that train visual models to distinguish occlusion patterns, SDR-GAIN aims to learn human pose directly from the numerical distribution of keypoint coordinates and interpolate missing positions. It employs a self-supervised adversarial learning paradigm to train lightweight generators with residual structures for the imputation of missing pose keypoints. Additionally, it integrates multiple pose standardization techniques to alleviate the difficulty of the learning process. Experiments conducted on the COCO and JAAD datasets demonstrate that SDR-GAIN surpasses conventional machine learning and Transformer-based missing data interpolation algorithms in accurately recovering occluded pedestrian keypoints, while simultaneously achieving microsecond-level real-time inference.
Related papers
- Towards Robust and Realistic Human Pose Estimation via WiFi Signals [85.60557095666934]
WiFi-based human pose estimation is a challenging task that bridges discrete and subtle WiFi signals to human skeletons.
This paper revisits this problem and reveals two critical yet overlooked issues: 1) cross-domain gap, i.e., due to significant variations between source-target domain pose distributions; and 2) structural fidelity gap, i.e., predicted skeletal poses manifest distorted topology.
This paper fills these gaps by reformulating the task into a novel two-phase framework dubbed DT-Pose: Domain-consistent representation learning and Topology-constrained Pose decoding.
arXiv Detail & Related papers (2025-01-16T09:38:22Z) - Unsupervised Domain Adaptation for Occlusion Resilient Human Pose Estimation [23.0839810713682]
Occlusions are a significant challenge to human pose estimation algorithms.
We propose OR-POSE: Unsupervised Domain Adaptation for Occlusion Resilient Human POSE Estimation.
arXiv Detail & Related papers (2025-01-06T05:30:37Z) - GTransPDM: A Graph-embedded Transformer with Positional Decoupling for Pedestrian Crossing Intention Prediction [5.647541727494757]
GTransPDM was developed for pedestrian crossing intention prediction by leveraging multi-modal features.<n>It achieves 92% accuracy on the PIE dataset and 87% accuracy on the JAAD dataset, with a processing speed of 0.05ms.
arXiv Detail & Related papers (2024-09-30T12:02:17Z) - Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
We leverage an importance map to distill critical semantic information, introducing a cooperative perception semantic communication framework.
To counter the challenges posed by time-varying multipath fading, our approach incorporates the use of frequency-division multiplexing (OFDM) along with channel estimation and equalization strategies.
We introduce a novel semantic error detection method that is integrated with our semantic communication framework in the spirit of hybrid automatic repeated request (HARQ)
arXiv Detail & Related papers (2024-08-29T08:53:26Z) - CRASH: Crash Recognition and Anticipation System Harnessing with Context-Aware and Temporal Focus Attentions [13.981748780317329]
Accurately and promptly predicting accidents among surrounding traffic agents from camera footage is crucial for the safety of autonomous vehicles (AVs)
This study introduces a novel accident anticipation framework for AVs, termed CRASH.
It seamlessly integrates five components: object detector, feature extractor, object-aware module, context-aware module, and multi-layer fusion.
Our model surpasses existing top baselines in critical evaluation metrics like Average Precision (AP) and mean Time-To-Accident (mTTA)
arXiv Detail & Related papers (2024-07-25T04:12:49Z) - Towards Cross-View-Consistent Self-Supervised Surround Depth Estimation [9.569646683579899]
Self-Supervised Surround Depth Estimation from consecutive images offers an economical alternative.
Previous SSSDE methods have proposed different mechanisms to fuse information across images, but few of them explicitly consider the cross-view constraints.
This paper proposes an efficient and consistent pose estimation design and two loss functions to enhance cross-view consistency for SSSDE.
arXiv Detail & Related papers (2024-07-04T16:29:05Z) - Residual Chain Prediction for Autonomous Driving Path Planning [5.139918355140954]
Residual Chain Loss dynamically adjusts the loss calculation process to enhance the temporal dependency and accuracy of predicted path points.
Our findings highlight the potential of Residual Chain Loss to revolutionize planning component of autonomous driving systems.
arXiv Detail & Related papers (2024-04-08T11:43:40Z) - Open-Vocabulary Animal Keypoint Detection with Semantic-feature Matching [74.75284453828017]
Open-Vocabulary Keypoint Detection (OVKD) task is innovatively designed to use text prompts for identifying arbitrary keypoints across any species.
We have developed a novel framework named Open-Vocabulary Keypoint Detection with Semantic-feature Matching (KDSM)
This framework combines vision and language models, creating an interplay between language features and local keypoint visual features.
arXiv Detail & Related papers (2023-10-08T07:42:41Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Online Learning of Wheel Odometry Correction for Mobile Robots with
Attention-based Neural Network [63.8376359764052]
Modern robotic platforms need a reliable localization system to operate daily beside humans.
Simple pose estimation algorithms based on filtered wheel and inertial odometry often fail in the presence of abrupt kinematic changes and wheel slips.
We propose an innovative online learning approach for wheel odometry correction, paving the way for a robust multi-source localization system.
arXiv Detail & Related papers (2023-03-21T10:30:31Z) - MDPose: Real-Time Multi-Person Pose Estimation via Mixture Density Model [27.849059115252008]
We propose a novel framework of single-stage instance-aware pose estimation by modeling the joint distribution of human keypoints.
Our MDPose achieves state-of-the-art performance by successfully learning the high-dimensional joint distribution of human keypoints.
arXiv Detail & Related papers (2023-02-17T08:29:33Z) - 2D Human Pose Estimation with Explicit Anatomical Keypoints Structure
Constraints [15.124606575017621]
We present a novel 2D human pose estimation method with explicit anatomical keypoints structure constraints.
Our proposed model can be plugged in the most existing bottom-up or top-down human pose estimation methods.
Our methods perform favorably against the most existing bottom-up and top-down human pose estimation methods.
arXiv Detail & Related papers (2022-12-05T11:01:43Z) - AlphaPose: Whole-Body Regional Multi-Person Pose Estimation and Tracking
in Real-Time [47.19339667836196]
We present AlphaPose, a system that can perform accurate whole-body pose estimation and tracking jointly while running in realtime.
We show a significant improvement over current state-of-the-art methods in both speed and accuracy on COCO-wholebody, COCO, PoseTrack, and our proposed Halpe-FullBody pose estimation dataset.
arXiv Detail & Related papers (2022-11-07T09:15:38Z) - Direct Dense Pose Estimation [138.56533828316833]
Dense human pose estimation is the problem of learning dense correspondences between RGB images and the surfaces of human bodies.
Prior dense pose estimation methods are all based on Mask R-CNN framework and operate in a top-down manner of first attempting to identify a bounding box for each person.
We propose a novel alternative method for solving the dense pose estimation problem, called Direct Dense Pose (DDP)
arXiv Detail & Related papers (2022-04-04T06:14:38Z) - Quality-aware Part Models for Occluded Person Re-identification [77.24920810798505]
Occlusion poses a major challenge for person re-identification (ReID)
Existing approaches typically rely on outside tools to infer visible body parts, which may be suboptimal in terms of both computational efficiency and ReID accuracy.
We propose a novel method named Quality-aware Part Models (QPM) for occlusion-robust ReID.
arXiv Detail & Related papers (2022-01-01T03:51:09Z) - Rethinking Keypoint Representations: Modeling Keypoints and Poses as
Objects for Multi-Person Human Pose Estimation [79.78017059539526]
We propose a new heatmap-free keypoint estimation method in which individual keypoints and sets of spatially related keypoints (i.e., poses) are modeled as objects within a dense single-stage anchor-based detection framework.
In experiments, we observe that KAPAO is significantly faster and more accurate than previous methods, which suffer greatly from heatmap post-processing.
Our large model, KAPAO-L, achieves an AP of 70.6 on the Microsoft COCO Keypoints validation set without test-time augmentation.
arXiv Detail & Related papers (2021-11-16T15:36:44Z) - Locally Aware Piecewise Transformation Fields for 3D Human Mesh
Registration [67.69257782645789]
We propose piecewise transformation fields that learn 3D translation vectors to map any query point in posed space to its correspond position in rest-pose space.
We show that fitting parametric models with poses by our network results in much better registration quality, especially for extreme poses.
arXiv Detail & Related papers (2021-04-16T15:16:09Z) - Progressive Self-Guided Loss for Salient Object Detection [102.35488902433896]
We present a progressive self-guided loss function to facilitate deep learning-based salient object detection in images.
Our framework takes advantage of adaptively aggregated multi-scale features to locate and detect salient objects effectively.
arXiv Detail & Related papers (2021-01-07T07:33:38Z) - Unsupervised Monocular Depth Learning with Integrated Intrinsics and
Spatio-Temporal Constraints [61.46323213702369]
This work presents an unsupervised learning framework that is able to predict at-scale depth maps and egomotion.
Our results demonstrate strong performance when compared to the current state-of-the-art on multiple sequences of the KITTI driving dataset.
arXiv Detail & Related papers (2020-11-02T22:26:58Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.