論文の概要: LANGTRAJ: Diffusion Model and Dataset for Language-Conditioned Trajectory Simulation
- arxiv url: http://arxiv.org/abs/2504.11521v1
- Date: Tue, 15 Apr 2025 17:14:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 14:38:29.603830
- Title: LANGTRAJ: Diffusion Model and Dataset for Language-Conditioned Trajectory Simulation
- Title(参考訳): LANGTRAJ:言語記述軌道シミュレーションのための拡散モデルとデータセット
- Authors: Wei-Jer Chang, Wei Zhan, Masayoshi Tomizuka, Manmohan Chandraker, Francesco Pittaluga,
- Abstract要約: LangTrajは、トラフィックシナリオにおけるすべてのエージェントの共同動作をシミュレートする、言語条件のシーン拡散モデルである。
自然言語入力を条件付けすることで、LangTrajはインタラクティブな振る舞いを柔軟かつ直感的に制御できる。
LangTraj氏は、リアリズム、言語制御性、言語条件の安全クリティカルなシミュレーションにおいて、強力なパフォーマンスを示している。
- 参考スコア(独自算出の注目度): 94.84458417662404
- License:
- Abstract: Evaluating autonomous vehicles with controllability enables scalable testing in counterfactual or structured settings, enhancing both efficiency and safety. We introduce LangTraj, a language-conditioned scene-diffusion model that simulates the joint behavior of all agents in traffic scenarios. By conditioning on natural language inputs, LangTraj provides flexible and intuitive control over interactive behaviors, generating nuanced and realistic scenarios. Unlike prior approaches that depend on domain-specific guidance functions, LangTraj incorporates language conditioning during training, facilitating more intuitive traffic simulation control. We propose a novel closed-loop training strategy for diffusion models, explicitly tailored to enhance stability and realism during closed-loop simulation. To support language-conditioned simulation, we develop Inter-Drive, a large-scale dataset with diverse and interactive labels for training language-conditioned diffusion models. Our dataset is built upon a scalable pipeline for annotating agent-agent interactions and single-agent behaviors, ensuring rich and varied supervision. Validated on the Waymo Motion Dataset, LangTraj demonstrates strong performance in realism, language controllability, and language-conditioned safety-critical simulation, establishing a new paradigm for flexible and scalable autonomous vehicle testing.
- Abstract(参考訳): 制御性のある自動運転車を評価することで、カウンターファクトや構造化された環境でのスケーラブルなテストを可能にし、効率性と安全性の両方を高めることができる。
本稿では,交通シナリオにおける全てのエージェントの協調動作をシミュレートする言語条件付きシーン拡散モデルであるLangTrajを紹介する。
自然言語入力を条件付けすることで、LangTrajはインタラクティブな振る舞いを柔軟かつ直感的に制御し、微妙で現実的なシナリオを生成する。
ドメイン固有のガイダンス機能に依存する従来のアプローチとは異なり、LangTrajはトレーニング中に言語コンディショニングを導入し、より直感的なトラフィックシミュレーション制御を容易にする。
そこで我々は, 閉ループシミュレーションにおける安定性とリアリズムを高めるために, 拡散モデルのための新しいクローズドループトレーニング戦略を提案する。
言語条件付きシミュレーションを支援するために,言語条件付き拡散モデルをトレーニングするための多種多様な対話型ラベルを持つ大規模データセットであるInter-Driveを開発した。
当社のデータセットは、エージェントエージェントとエージェントのインタラクションと単一エージェントの振る舞いをアノテートするためのスケーラブルなパイプライン上に構築されています。
Waymo Motion Datasetで検証されたLangTrajは、リアリズム、言語制御性、言語条件付き安全クリティカルなシミュレーションにおける強力なパフォーマンスを示し、フレキシブルでスケーラブルな自動運転車テストのための新しいパラダイムを確立している。
関連論文リスト
- SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
自動運転開発における長年の課題は、記録された運転ログからシードされた動的運転シナリオをシミュレートすることだ。
車両、歩行者、サイクリストが運転シナリオでどのように相互作用するかをモデル化するために、離散シーケンスモデリングのツールを適用します。
我々のモデルはSim Agents Benchmarkを上回り、リアリズムメタメトリックの先行作業の3.3%、インタラクションメトリックの9.9%を上回ります。
論文 参考訳(メタデータ) (2023-12-07T18:53:27Z) - Fast-Slow Test-Time Adaptation for Online Vision-and-Language Navigation [67.18144414660681]
オンラインビジョン・アンド・ランゲージナビゲーション(VLN)のためのFSTTA(Fast-Slow Test-Time Adaptation)アプローチを提案する。
提案手法は,4つのベンチマークにおいて顕著な性能向上を実現する。
論文 参考訳(メタデータ) (2023-11-22T07:47:39Z) - MotionLM: Multi-Agent Motion Forecasting as Language Modeling [15.317827804763699]
マルチエージェント動作予測のための言語モデルであるMotionLMを提案する。
本手法は,対話的なスコアリングに先立って個々のエージェントの軌道生成を行う,ポストホック相互作用をバイパスする。
モデルの逐次分解は、時間的因果条件のロールアウトを可能にする。
論文 参考訳(メタデータ) (2023-09-28T15:46:25Z) - Language-Guided Traffic Simulation via Scene-Level Diffusion [46.47977644226296]
本稿では,シーンレベルの条件拡散モデルであるCTG++について述べる。
まず,現実的で制御可能なトラフィックを生成する時間的バックボーンを備えたシーンレベルの拡散モデルを提案する。
次に、大きな言語モデル(LLM)を用いて、ユーザクエリを、拡散モデルをクエリに準拠した生成に導く損失関数に変換する。
論文 参考訳(メタデータ) (2023-06-10T05:20:30Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - Guided Conditional Diffusion for Controllable Traffic Simulation [42.198185904248994]
制御可能で現実的な交通シミュレーションは、自動運転車の開発と検証に不可欠である。
データ駆動アプローチは現実的で人間的な振る舞いを生成し、シミュレートされたトラフィックから現実のトラフィックへの移行を改善する。
本研究では,制御可能なトラヒック生成(CTG)のための条件拡散モデルを構築し,テスト時に所望のトラジェクトリ特性を制御できるようにする。
論文 参考訳(メタデータ) (2022-10-31T14:44:59Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
リアル交通シミュレーションのためのマルチエージェント行動モデルであるTrafficSimを提案する。
特に、暗黙の潜在変数モデルを利用して、共同アクターポリシーをパラメータ化する。
TrafficSimは、多様なベースラインと比較して、より現実的で多様なトラフィックシナリオを生成します。
論文 参考訳(メタデータ) (2021-01-17T00:29:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。