論文の概要: Towards Interpretable Deep Generative Models via Causal Representation Learning
- arxiv url: http://arxiv.org/abs/2504.11609v1
- Date: Tue, 15 Apr 2025 20:46:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 14:40:54.965239
- Title: Towards Interpretable Deep Generative Models via Causal Representation Learning
- Title(参考訳): 因果表現学習による深部生成モデルの解釈に向けて
- Authors: Gemma E. Moran, Bryon Aragam,
- Abstract要約: ディープラーニングや生成モデリングといった機械学習技術は、幅広い領域にわたる最先端のパフォーマンスを実現する。
ディープニューラルネットワークは、これらの表現を曖昧にするブラックボックスとして知られており、解釈や分析を困難にしている。
因果表現学習の新たな分野は、柔軟で解釈可能で、伝達可能な生成可能なAIを構築するためのベクトルとして因果性を使用している。
- 参考スコア(独自算出の注目度): 11.134234758571298
- License:
- Abstract: Recent developments in generative artificial intelligence (AI) rely on machine learning techniques such as deep learning and generative modeling to achieve state-of-the-art performance across wide-ranging domains. These methods' surprising performance is due in part to their ability to learn implicit "representations'' of complex, multi-modal data. Unfortunately, deep neural networks are notoriously black boxes that obscure these representations, making them difficult to interpret or analyze. To resolve these difficulties, one approach is to build new interpretable neural network models from the ground up. This is the goal of the emerging field of causal representation learning (CRL) that uses causality as a vector for building flexible, interpretable, and transferable generative AI. CRL can be seen as a culmination of three intrinsically statistical problems: (i) latent variable models such as factor analysis; (ii) causal graphical models with latent variables; and (iii) nonparametric statistics and deep learning. This paper reviews recent progress in CRL from a statistical perspective, focusing on connections to classical models and statistical and causal identifiablity results. This review also highlights key application areas, implementation strategies, and open statistical questions in CRL.
- Abstract(参考訳): 生成人工知能(AI)の最近の進歩は、広範囲にわたる最先端の性能を達成するために、ディープラーニングや生成モデリングのような機械学習技術に依存している。
これらのメソッドの驚くべき性能は、複雑でマルチモーダルなデータの暗黙的な「表現」を学習できる能力に起因している。
残念ながら、ディープニューラルネットワークは、これらの表現を隠蔽するブラックボックスとして知られているため、解釈や分析が難しい。
これらの問題を解決するために、新しい解釈可能なニューラルネットワークモデルをゼロから構築するアプローチがある。
これは因果表現学習(CRL)の新たな分野の目標であり、因果関係を柔軟性、解釈可能、伝達可能な生成可能なAIを構築するためのベクトルとして利用する。
CRLは3つの本質的な統計的問題の頂点と見なすことができる。
(i)因子分析などの潜在変数モデル
(二)潜伏変数を有する因果図形モデル、及び
(三)非パラメトリック統計と深層学習。
本稿では, 統計学的観点からのCRLの最近の進歩を概観し, 古典的モデルとの関係と統計的および因果的同一性の結果に焦点をあてる。
このレビューではまた、CRLにおける重要なアプリケーション領域、実装戦略、オープンな統計問題も取り上げている。
関連論文リスト
- Identifiable Causal Representation Learning: Unsupervised, Multi-View, and Multi-Environment [10.814585613336778]
因果表現学習は、機械学習のコアとなる強みと因果性を組み合わせることを目的としている。
この論文は、CRLが直接の監督なしに何が可能であるかを調査し、理論的基礎に寄与する。
論文 参考訳(メタデータ) (2024-06-19T09:14:40Z) - Machine Learning vs Deep Learning: The Generalization Problem [0.0]
本研究では,従来の機械学習(ML)モデルとディープラーニング(DL)アルゴリズムの比較能力について,外挿の観点から検討した。
本稿では,MLモデルとDLモデルの両方が指数関数で学習され,学習領域外の値でテストされる経験的分析を提案する。
その結果,ディープラーニングモデルには,学習範囲を超えて一般化する固有の能力があることが示唆された。
論文 参考訳(メタデータ) (2024-03-03T21:42:55Z) - From Identifiable Causal Representations to Controllable Counterfactual Generation: A Survey on Causal Generative Modeling [17.074858228123706]
基本的な理論、方法論、欠点、データセット、メトリクスに重点を置いています。
フェアネス、プライバシ、アウト・オブ・ディストリビューションの一般化、精密医療、生物科学における因果生成モデルの応用について述べる。
論文 参考訳(メタデータ) (2023-10-17T05:45:32Z) - A Novel Neural-symbolic System under Statistical Relational Learning [47.30190559449236]
NSF-SRLと呼ばれる統計的関係学習に基づくニューラルシンボリック・フレームワークを提案する。
シンボリック推論の結果は、深層学習モデルによる予測の洗練と修正に利用され、深層学習モデルはシンボリック推論プロセスの効率を高める。
我々は、このアプローチがニューラルシンボリックシステムの新しい標準となり、汎用人工知能の分野における将来の研究を促進すると信じている。
論文 参考訳(メタデータ) (2023-09-16T09:15:37Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
独立サブネットワークトレーニング(IST)の理論的考察
ISTは、上記の問題を解決するための、最近提案され、非常に効果的である。
圧縮通信を用いた分散手法など,ISTと代替手法の基本的な違いを同定する。
論文 参考訳(メタデータ) (2023-06-28T18:14:22Z) - Algebraic Learning: Towards Interpretable Information Modeling [0.0]
この論文は、一般的な情報モデリングにおける解釈可能性の問題に対処し、問題を2つの範囲から緩和する試みである。
まず、問題指向の視点を用いて、興味深い数学的性質が自然に現れるモデリング実践に知識を取り入れる。
第二に、訓練されたモデルを考えると、基礎となるシステムに関するさらなる洞察を抽出するために様々な方法を適用することができる。
論文 参考訳(メタデータ) (2022-03-13T15:53:39Z) - Deep Learning Reproducibility and Explainable AI (XAI) [9.13755431537592]
ディープラーニング(DL)学習アルゴリズムの非決定性とそのニューラルネットワーク(NN)モデルの説明可能性への影響について検討した。
この問題について議論するため、2つの畳み込みニューラルネットワーク(CNN)をトレーニングし、その結果を比較した。
論文 参考訳(メタデータ) (2022-02-23T12:06:20Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
本稿では,敵対的事例に基づくニューラルネットワークモデルを検討するためのビジュアルフレームワークを提案する。
これらの要素を観察することで、モデル内の悪用領域を素早く特定できることを示す。
論文 参考訳(メタデータ) (2021-03-18T13:04:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。