Thermal Noise as a Window into the Quantum Vacuum: Spatial Patterns Revealed by Simple Experiments
- URL: http://arxiv.org/abs/2504.11764v2
- Date: Sat, 03 May 2025 02:43:17 GMT
- Title: Thermal Noise as a Window into the Quantum Vacuum: Spatial Patterns Revealed by Simple Experiments
- Authors: Sun-Hyun Youn,
- Abstract summary: We show that the spatial structure of electromagnetic vacuum fluctuations can be indirectly observed using thermal noise at radio frequencies.<n>This provides accessible, experimental evidence for quantum vacuum behavior without requiring advanced optics or cryogenics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We show that the spatial structure of electromagnetic vacuum fluctuations, predicted by quantum electrodynamics, can be indirectly observed using thermal noise at radio frequencies. Using simple lab equipment like coaxial cables and RF splitters, we detect a clear suppression of thermal noise near conducting boundaries, mirroring the expected modulation of vacuum modes. This provides accessible, experimental evidence for quantum vacuum behavior without requiring advanced optics or cryogenics.
Related papers
- The Darkfield Approach to Measuring Vacuum Birefringence and Light-by-Light Couplings -- A Proof-of-Principle Experiment [47.269836510794505]
nonlinear vacuum response is very small even when probing a tightly focused high-intensity laser field with XFEL radiation.<n>We present the results of a proof-of-principle experiment validating this approach at the High Energy Density scientific instrument of the European X-Ray Free Electron Laser.
arXiv Detail & Related papers (2025-06-13T10:23:55Z) - Thermal spectrometer for superconducting circuits [38.00453341685376]
Superconducting circuits provide a versatile and controllable platform for studies of quantum phenomena.<n>A conventional technique to read out the state of a quantum circuit or to characterize its properties is based on RF measurement schemes.<n>Here we demonstrate a simple DC measurement of a thermal spectrometer to investigate properties of a superconducting circuit.
arXiv Detail & Related papers (2024-09-20T11:30:59Z) - Sensing atomic superfluid rotation beyond the standard quantum limit [9.168807394388612]
Atomic superfluids formed using Bose-Einstein condensates (BECs) in a ring trap are being investigated in the context of superfluid hydrodynamics, quantum sensing and matter-wave interferometry.
Recent studies have proposed coupling the ring BEC to optical cavity modes carrying orbital angular momentum to make minimally destructive measurements of the condensate rotation.
We present a detailed theoretical analysis to demonstrate that the use of squeezed light and backaction evasion techniques allows the angular momentum of the condensate to be sensed with noise well below the standard quantum limit.
arXiv Detail & Related papers (2024-02-29T13:00:30Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Cloaking a qubit in a cavity [36.136619420474766]
Cavity quantum electrodynamics (QED) uses a cavity to engineer the mode structure of the vacuum electromagnetic field.
Controllably decoupling a qubit from the cavity's photon population, effectively cloaking the qubit from the cavity.
Experiment demonstrates how qubit cloaking can be exploited to cancel ac-Stark shift and measurement-induced dephasing.
arXiv Detail & Related papers (2022-11-10T18:45:03Z) - Incandescent temporal metamaterials [0.0]
Time-varying media can be seized to control and manipulate wave phenomena.
Time-modulation releases strong field fluctuations confined within epsilon-near-zero bodies.
It enables a narrowband (partially coherent) emission spanning the whole range of wavevectors.
arXiv Detail & Related papers (2022-10-11T16:00:00Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Ultrafast modulation of vibrational polaritons for controlling the
quantum field statistics at mid-infrared frequencies [0.0]
We show that by coupling molecular vibrations with a confined mid-infrared cavity vacuum, the photocount and quadrature field statistics of the cavity field can be reversibly manipulated over sub-picosecond timescales.
This work paves the way for the development of molecule-based mid-infrared quantum optical devices at room temperature.
arXiv Detail & Related papers (2021-11-12T14:06:58Z) - Dissipative Quantum Feedback in Measurements Using a Parametrically
Coupled Microcavity [0.0]
Micro- and nanoscale optical or microwave cavities are used in a wide range of classical applications and quantum science experiments.
Dissipative photon absorption can result in quantum feedback via in-loop field detection of the absorbed optical field.
We experimentally observe such unanticipated dissipative dynamics in optomechanical spectroscopy of sideband-cooled optomechanical crystal cavities.
arXiv Detail & Related papers (2021-09-29T15:12:45Z) - Probing the Purcell effect without radiative decay: Lessons in the
frequency and time domains [0.0]
We show how one can directly study the Purcell effect, i.e. the changes induced by cavities upon the quantum vacuum.
This forges a link between electro-optic sampling of the quantum vacuum and geometry-induced vacuum effects.
arXiv Detail & Related papers (2021-07-06T14:38:35Z) - Spacetime effects on wavepackets of coherent light [24.587462517914865]
We introduce an operational way to distinguish between the overall shift in the pulse wavepacket and its genuine deformation after propagation.
We then apply our technique to quantum states of photons that are coherent in the frequency degree of freedom.
We find that the quantum coherence initially present can enhance the deformation induced by propagation in a curved background.
arXiv Detail & Related papers (2021-06-23T14:20:19Z) - Tunable Anderson Localization of Dark States [146.2730735143614]
We experimentally study Anderson localization in a superconducting waveguide quantum electrodynamics system.
We observe an exponential suppression of the transmission coefficient in the vicinity of its subradiant dark modes.
The experiment opens the door to the study of various localization phenomena on a new platform.
arXiv Detail & Related papers (2021-05-25T07:52:52Z) - Realizing an Unruh-DeWitt detector through electro-optic sampling of the
electromagnetic vacuum [0.0]
We present a new theoretical framework to describe the experimental advances in electro-optic detection of broadband quantum states.
We discuss the specific working regime of such processes, and the consequences through characterization of the quantum light involved in the detection.
arXiv Detail & Related papers (2021-03-26T10:04:07Z) - Quantum sensitivity limits of nuclear magnetic resonance experiments
searching for new fundamental physics [91.6474995587871]
Nuclear magnetic resonance is a promising experimental approach to search for ultra-light axion-like dark matter.
We consider a circuit model of a magnetic resonance experiment and quantify three noise sources: spin-projection noise, thermal noise, and amplifier noise.
arXiv Detail & Related papers (2021-03-10T19:00:02Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Thermal intermodulation noise in cavity-based measurements [0.0]
We show that nonlinearly transduced thermal fluctuations of cavity frequency can dominate the broadband noise in photodetection.
We report and characterize thermal intermodulation noise in an optomechanical cavity, where the frequency fluctuations are caused by mechanical Brownian motion.
arXiv Detail & Related papers (2020-04-12T21:24:23Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z) - Zero-point excitation of a circularly moving detector in an atomic
condensate and phonon laser dynamical instabilities [0.0]
We study a circularly moving impurity in an atomic condensate for realisation of superradiance phenomena in tabletop experiments.
For sufficiently large rotation speeds, the zero-point fluctuations of the phonon field induce a sizeable excitation rate of the detector.
arXiv Detail & Related papers (2020-01-23T16:36:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.