論文の概要: Discrimination-free Insurance Pricing with Privatized Sensitive Attributes
- arxiv url: http://arxiv.org/abs/2504.11775v1
- Date: Wed, 16 Apr 2025 05:29:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 14:40:56.934623
- Title: Discrimination-free Insurance Pricing with Privatized Sensitive Attributes
- Title(参考訳): プライバタイズされた感性属性による差別フリー保険料
- Authors: Tianhe Zhang, Suhan Liu, Peng Shi,
- Abstract要約: 保険は、この点において注目に値する分野の1つである。
確立された概念に従って公正を達成することは、保険の公正な価格を自動的に保証するものではない。
本稿では,保険ドメインに適した公正なモデルを構築するための効率的な方法を提案する。
- 参考スコア(独自算出の注目度): 13.511945406946602
- License:
- Abstract: Fairness has emerged as a critical consideration in the landscape of machine learning algorithms, particularly as AI continues to transform decision-making across societal domains. To ensure that these algorithms are free from bias and do not discriminate against individuals based on sensitive attributes such as gender and race, the field of algorithmic bias has introduced various fairness concepts, along with methodologies to achieve these notions in different contexts. Despite the rapid advancement, not all sectors have embraced these fairness principles to the same extent. One specific sector that merits attention in this regard is insurance. Within the realm of insurance pricing, fairness is defined through a distinct and specialized framework. Consequently, achieving fairness according to established notions does not automatically ensure fair pricing in insurance. In particular, regulators are increasingly emphasizing transparency in pricing algorithms and imposing constraints on insurance companies on the collection and utilization of sensitive consumer attributes. These factors present additional challenges in the implementation of fairness in pricing algorithms. To address these complexities and comply with regulatory demands, we propose an efficient method for constructing fair models that are tailored to the insurance domain, using only privatized sensitive attributes. Notably, our approach ensures statistical guarantees, does not require direct access to sensitive attributes, and adapts to varying transparency requirements, addressing regulatory demands while ensuring fairness in insurance pricing.
- Abstract(参考訳): フェアネスは、特にAIが社会的領域にまたがって意思決定を変革し続けているため、機械学習アルゴリズムのランドスケープにおいて重要な考慮事項として現れてきた。
これらのアルゴリズムが偏見から解放され、性別や人種などのセンシティブな属性に基づいて個人を差別しないことを保証するため、アルゴリズムバイアスの分野は、これらの概念を異なる文脈で達成するための方法論とともに、様々な公正の概念を導入してきた。
急速な進歩にもかかわらず、すべてのセクターがこれらの公正原則を同じ程度に受け入れているわけではない。
この点で注目に値する特定の分野は保険である。
保険価格の領域内では、公正性は独立した専門的な枠組みによって定義される。
したがって、確立された概念に従って公正を達成することは、保険の公正な価格を自動的に保証するわけではない。
特に、規制当局は、価格アルゴリズムの透明性を強調し、センシティブな消費者属性の収集と利用に関して保険会社に制約を課している。
これらの要因は、価格アルゴリズムにおける公平性の実装において、さらなる課題をもたらす。
これらの複雑さに対処し、規制要求に従うため、民営化された機密属性のみを用いて、保険ドメインに適合した公正なモデルを構築するための効率的な方法を提案する。
特に,本手法は,統計的保証を保証し,センシティブな属性に直接アクセスする必要がなく,透明性要件に適応し,保険価格の公正性を確保しつつ,規制要件に対処する。
関連論文リスト
- Peer-induced Fairness: A Causal Approach for Algorithmic Fairness Auditing [0.0]
欧州連合の人工知能法は2024年8月1日に施行された。
リスクの高いAIアプリケーションは、厳格な透明性と公正な基準に従わなければならない。
本稿では,対実的公正性とピア比較戦略の強みを組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-08-05T15:35:34Z) - Measuring and Mitigating Biases in Motor Insurance Pricing [1.2289361708127877]
非生命保険部門は高度に競争力があり厳格に規制された枠組みで運営されている。
年齢ベースのプレミアムフェアネスは、特定の保険ドメインにも義務付けられている。
ある保険領域では、重篤な疾患や障害の存在などの変数が、公正性を評価するための新しい次元として現れている。
論文 参考訳(メタデータ) (2023-11-20T16:34:48Z) - AI and ethics in insurance: a new solution to mitigate proxy
discrimination in risk modeling [0.0]
保険におけるデータの倫理的利用に関する規制当局の注目が高まる中で、アクチュアリアル・コミュニティは価格設定とリスク選択の実践を再考しなければならない。
エクイティ(Equity)は、現在合意に達することなく互いに影響を及ぼすあらゆる分野において、多くの異なる定義を持つ哲学概念である。
我々は、線形代数の数学的概念により間接的差別のリスクを低減するために、文献ではまだ満たされていない革新的な方法を提案する。
論文 参考訳(メタデータ) (2023-07-25T16:20:56Z) - Causal Fairness for Outcome Control [68.12191782657437]
本稿では,自動システムにおいて,公平かつ公平な結果変数を最適化することを目的とした,結果制御と呼ばれる特定の意思決定タスクについて検討する。
本稿では、まず因果レンズを通して利益の概念を分析し、特定の個人が肯定的な決定によってどれだけの利益を得られるかを明らかにする。
次に、保護された属性の影響を受けている可能性があることに留意し、これを分析するために使用できる因果的ツールを提案する。
論文 参考訳(メタデータ) (2023-06-08T09:31:18Z) - Group Fairness with Uncertainty in Sensitive Attributes [34.608332397776245]
公正な予測モデルは、ハイテイクなアプリケーションにおける少数派グループに対する偏見のある決定を緩和するために不可欠である。
本稿では, 感度特性の不確実性にも拘わらず, フェアネスの目標レベルを達成するブートストラップに基づくアルゴリズムを提案する。
本アルゴリズムは離散的属性と連続的属性の両方に適用可能であり,実世界の分類や回帰作業に有効である。
論文 参考訳(メタデータ) (2023-02-16T04:33:00Z) - Fairness in Matching under Uncertainty [78.39459690570531]
アルゴリズム的な二面市場は、こうした設定における公平性の問題に注意を向けている。
我々は、利益の不確実性を尊重する両面の市場設定において、個々人の公正性の概念を公理化する。
そこで我々は,配当よりも公平なユーティリティ最大化分布を求めるために,線形プログラミングフレームワークを設計する。
論文 参考訳(メタデータ) (2023-02-08T00:30:32Z) - Practical Approaches for Fair Learning with Multitype and Multivariate
Sensitive Attributes [70.6326967720747]
現実世界に展開された機械学習アルゴリズムが不公平さや意図しない社会的結果をもたらすことはないことを保証することが重要である。
本稿では,カーネルHilbert Spacesの相互共分散演算子上に構築されたフェアネス尺度であるFairCOCCOを紹介する。
実世界のデータセットにおける予測能力と公正性のバランスをとる上で、最先端技術に対する一貫した改善を実証的に示す。
論文 参考訳(メタデータ) (2022-11-11T11:28:46Z) - A Discussion of Discrimination and Fairness in Insurance Pricing [0.0]
グループフェアネスの概念は、保険価格の計算における保護特性の影響を和らげるために提案されている。
代行差別のない統計モデルを提案するので、保険価格の観点からは非プロブレマティックである。
この統計モデルの標準価格は、最も人気のある3つの群フェアネス公理のいずれかを満たすものではない。
論文 参考訳(メタデータ) (2022-09-02T07:31:37Z) - Measuring Fairness Under Unawareness of Sensitive Attributes: A
Quantification-Based Approach [131.20444904674494]
センシティブな属性の無意識下でのグループフェアネスを測定する問題に取り組む。
定量化手法は, フェアネスと無意識の問題に対処するのに特に適していることを示す。
論文 参考訳(メタデータ) (2021-09-17T13:45:46Z) - Learning Strategies in Decentralized Matching Markets under Uncertain
Preferences [91.3755431537592]
エージェントの選好が不明な場合,共有資源の不足の設定における意思決定の問題について検討する。
我々のアプローチは、再生されたカーネルヒルベルト空間における好みの表現に基づいている。
エージェントの期待した利益を最大化する最適な戦略を導出する。
論文 参考訳(メタデータ) (2020-10-29T03:08:22Z) - VCG Mechanism Design with Unknown Agent Values under Stochastic Bandit
Feedback [104.06766271716774]
本研究では,エージェントが自己の価値を知らない場合に,マルチラウンドの福祉最大化機構設計問題について検討する。
まず、福祉に対する後悔の3つの概念、各エージェントの個々のユーティリティ、メカニズムの3つの概念を定義します。
当社のフレームワークは価格体系を柔軟に制御し、エージェントと販売者の後悔のトレードオフを可能にする。
論文 参考訳(メタデータ) (2020-04-19T18:00:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。