論文の概要: Evaluating the Goal-Directedness of Large Language Models
- arxiv url: http://arxiv.org/abs/2504.11844v1
- Date: Wed, 16 Apr 2025 08:07:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 14:40:53.843158
- Title: Evaluating the Goal-Directedness of Large Language Models
- Title(参考訳): 大規模言語モデルの目標指向性評価
- Authors: Tom Everitt, Cristina Garbacea, Alexis Bellot, Jonathan Richens, Henry Papadatos, Siméon Campos, Rohin Shah,
- Abstract要約: 我々は,情報収集,認知活動,計画実行を必要とするタスクに対して,目標指向性を評価する。
Google DeepMind、OpenAI、AnthhropicによるLCMの評価は、ゴール指向性はタスク間で比較的一貫性があることを示している。
- 参考スコア(独自算出の注目度): 17.08087240111954
- License:
- Abstract: To what extent do LLMs use their capabilities towards their given goal? We take this as a measure of their goal-directedness. We evaluate goal-directedness on tasks that require information gathering, cognitive effort, and plan execution, where we use subtasks to infer each model's relevant capabilities. Our evaluations of LLMs from Google DeepMind, OpenAI, and Anthropic show that goal-directedness is relatively consistent across tasks, differs from task performance, and is only moderately sensitive to motivational prompts. Notably, most models are not fully goal-directed. We hope our goal-directedness evaluations will enable better monitoring of LLM progress, and enable more deliberate design choices of agentic properties in LLMs.
- Abstract(参考訳): LLMは、その目標に対して、どの程度までその能力を使用しますか?
私たちはこれを,目標指向性の尺度として捉えています。
我々は,情報収集,認知活動,計画実行を必要とするタスクに対する目標指向性を評価し,各モデルの関連能力を推測するためにサブタスクを使用する。
Google DeepMind、OpenAI、AnthhropicによるLCMの評価は、ゴール指向性はタスク間で比較的一貫性があり、タスクのパフォーマンスと異なり、モチベーションのプロンプトに対して中程度に敏感であることを示している。
特に、ほとんどのモデルは完全なゴール指向ではない。
目標指向性評価により,LSMの進捗監視が向上し,LSMのエージェント特性をより意図的に設計することが可能になると期待している。
関連論文リスト
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making [85.24399869971236]
我々は,大規模言語モデル(LLM)を具体的意思決定のために評価することを目指している。
既存の評価は最終的な成功率にのみ依存する傾向がある。
本稿では,様々なタスクの形式化を支援する汎用インタフェース (Embodied Agent Interface) を提案する。
論文 参考訳(メタデータ) (2024-10-09T17:59:00Z) - Assessing the Zero-Shot Capabilities of LLMs for Action Evaluation in RL [14.091146805312636]
信用割当問題は強化学習(RL)における中心的な課題である
クレジット・アサインメント・ウィズ・ランゲージ・モデル(CALM)は、報酬形成とオプション発見を通じてクレジット・アサインメントを自動化する新しいアプローチである。
予備的な結果は、大規模言語モデルの知識が、RLにおける信用代入の有望な先行であることを示している。
論文 参考訳(メタデータ) (2024-09-19T14:08:09Z) - Meta Reasoning for Large Language Models [58.87183757029041]
大規模言語モデル(LLM)の新規かつ効率的なシステムプロセッシング手法であるメタ推論プロンプト(MRP)を導入する。
MRPは、各タスクの特定の要求に基づいて異なる推論メソッドを動的に選択し、適用するようLLMに誘導する。
総合的なベンチマークによりMPPの有効性を評価する。
論文 参考訳(メタデータ) (2024-06-17T16:14:11Z) - A Survey of Useful LLM Evaluation [20.048914787813263]
2段階フレームワーク:コア能力からエージェントへ」
コア能力」の段階では, LLMの推論能力, 社会的影響, ドメイン知識について議論した。
エージェントの段階では, LLMエージェントアプリケーションの動作, 計画, ツール学習の具体化を実演した。
論文 参考訳(メタデータ) (2024-06-03T02:20:03Z) - Sub-goal Distillation: A Method to Improve Small Language Agents [21.815417165548187]
大規模言語モデル(LLM)は対話型タスクにおけるエージェントとして大きな可能性を証明している。
数十億のパラメータを持つLLMの性能を、はるかに小さな言語モデルに転送する手法を提案する。
困難かつマルチタスクな対話型テキスト環境であるScienceWorldでは,基本動作のみに基づく標準的な模倣学習を16.7%超えている。
論文 参考訳(メタデータ) (2024-05-04T20:34:06Z) - Measuring and Improving Chain-of-Thought Reasoning in Vision-Language Models [61.28463542324576]
視覚言語モデル(VLM)は近年,人間のような出力を生成できる視覚アシスタントとして,強力な有効性を示している。
我々は、既存の最先端のVLMを評価し、最高の性能モデルでさえ、強力な視覚的推論能力と一貫性を示すことができないことを発見した。
本稿では,VLMの推論性能と一貫性の向上を目的とした2段階トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-08T17:49:44Z) - Discrete Factorial Representations as an Abstraction for Goal
Conditioned Reinforcement Learning [99.38163119531745]
離散化ボトルネックを適用することにより,目標条件付きRLセットアップの性能が向上することを示す。
分布外目標に対する期待した回帰を実験的に証明し、同時に表現的な構造で目標を指定できるようにします。
論文 参考訳(メタデータ) (2022-11-01T03:31:43Z) - Automatic Curriculum Learning through Value Disagreement [95.19299356298876]
新しい未解決タスクを継続的に解決することが、多様な行動を学ぶための鍵です。
エージェントが複数の目標を達成する必要があるマルチタスク領域では、トレーニング目標の選択はサンプル効率に大きな影響を与える可能性がある。
そこで我々は,エージェントが解決すべき目標のための自動カリキュラムを作成することを提案する。
提案手法は,13のマルチゴールロボットタスクと5つのナビゲーションタスクにまたがって評価し,現在の最先端手法よりも高い性能を示す。
論文 参考訳(メタデータ) (2020-06-17T03:58:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。