論文の概要: EngramNCA: a Neural Cellular Automaton Model of Memory Transfer
- arxiv url: http://arxiv.org/abs/2504.11855v1
- Date: Wed, 16 Apr 2025 08:23:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 14:40:51.948190
- Title: EngramNCA: a Neural Cellular Automaton Model of Memory Transfer
- Title(参考訳): EngramNCA: 記憶伝達のニューラルセルオートマトンモデル
- Authors: Etienne Guichard, Felix Reimers, Mia Kvalsund, Mikkel Lepperød, Stefano Nichele,
- Abstract要約: 本研究では、公開状態とプライベートな細胞内記憶チャネルの両方を統合する神経細胞オートマトン(NCA)であるEngramNCAを紹介する。
提案モデルでは、不変な「遺伝子」エンコーディングを含む種子細胞から異なる形態を発達させる訓練を受けたNCAであるGeneCAと、その可視状態を変化させることなく、細胞のプライベートな「遺伝子」記憶を調節する補助的なNCAであるGenePropCAの2つのコンポーネントから構成される。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This study introduces EngramNCA, a neural cellular automaton (NCA) that integrates both publicly visible states and private, cell-internal memory channels, drawing inspiration from emerging biological evidence suggesting that memory storage extends beyond synaptic modifications to include intracellular mechanisms. The proposed model comprises two components: GeneCA, an NCA trained to develop distinct morphologies from seed cells containing immutable "gene" encodings, and GenePropCA, an auxiliary NCA that modulates the private "genetic" memory of cells without altering their visible states. This architecture enables the encoding and propagation of complex morphologies through the interaction of visible and private channels, facilitating the growth of diverse structures from a shared "genetic" substrate. EngramNCA supports the emergence of hierarchical and coexisting morphologies, offering insights into decentralized memory storage and transfer in artificial systems. These findings have potential implications for the development of adaptive, self-organizing systems and may contribute to the broader understanding of memory mechanisms in both biological and synthetic contexts.
- Abstract(参考訳): この研究は、公開状態とプライベートな細胞内記憶チャネルの両方を統合する神経細胞オートマトン(NCA)であるEngramNCAを紹介し、記憶の記憶がシナプス的な変化を超えて細胞内機構を含むことを示唆する新たな生物学的証拠から着想を得た。
提案モデルでは、不変な「遺伝子」エンコーディングを含む種子細胞から異なる形態を発達させる訓練を受けたNCAであるGeneCAと、その可視状態を変化させることなく、細胞のプライベートな「遺伝子」記憶を調節する補助的なNCAであるGenePropCAの2つのコンポーネントから構成される。
このアーキテクチャは、可視チャネルとプライベートチャネルの相互作用を通じて複雑な形態の符号化と伝播を可能にし、共有された「遺伝的」基質からの多様な構造の成長を促進する。
EngramNCAは階層的で共存する形態の出現をサポートし、人工システムにおける分散メモリストレージと転送に関する洞察を提供する。
これらの知見は適応的で自己組織化されたシステムの発展に潜在的に影響を及ぼし、生物学的および合成両方の文脈における記憶機構のより広範な理解に寄与する可能性がある。
関連論文リスト
- Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - In search of dispersed memories: Generative diffusion models are
associative memory networks [6.4322891559626125]
生成拡散モデル(Generative diffusion model)は、多くのタスクにおいて優れたパフォーマンスを示す生成機械学習技術の一種である。
生成拡散モデルはエネルギーベースモデルと解釈でき、離散パターンで訓練すると、それらのエネルギー関数は現在のホップフィールドネットワークと同一であることを示す。
この等価性により、深層ニューラルネットワークの重み構造における現代のホップフィールドネットワークの連想力学を符号化するシナプス学習プロセスとして拡散モデルの教師付きトレーニングを解釈することができる。
論文 参考訳(メタデータ) (2023-09-29T14:48:24Z) - A Study of Biologically Plausible Neural Network: The Role and
Interactions of Brain-Inspired Mechanisms in Continual Learning [13.041607703862724]
人間は絶えず変化する環境から情報を取得し、統合し、保持するのに優れていますが、人工ニューラルネットワーク(ANN)は破滅的な忘れ物を示します。
我々は、デイルの原理に従う排他的および抑制的ニューロンの集団を分離して構成する生物学的に妥当な枠組みを考察する。
次に,脳にインスパイアされた様々なメカニズムの役割と相互作用について包括的研究を行い,その内容は,疎密な非重複表現,ヘビアン学習,シナプス統合,学習イベントに伴う過去の活性化の再現などである。
論文 参考訳(メタデータ) (2023-04-13T16:34:12Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - Growing Isotropic Neural Cellular Automata [63.91346650159648]
我々は、元のGrowing NCAモデルには、学習された更新規則の異方性という重要な制限があると主張している。
細胞系は2つの方法のいずれかによって、正確な非対称パターンを成長させる訓練が可能であることを実証する。
論文 参考訳(メタデータ) (2022-05-03T11:34:22Z) - Neurons as hierarchies of quantum reference frames [0.0]
我々は、シナプス、樹状突起および軸索過程、ニューロン、局所ネットワークの均一でスケーラブルな表現を開発する。
発達的・再生的文脈において、モデルがどのように非神経細胞や組織に一般化されるのかを概説する。
論文 参考訳(メタデータ) (2022-01-04T00:53:56Z) - Neural Cellular Automata Manifold [84.08170531451006]
ニューラルセルラーオートマタのニューラルネットワークアーキテクチャは、より大きなNNにカプセル化可能であることを示す。
これにより、NAAの多様体を符号化する新しいモデルを提案し、それぞれが異なる画像を生成することができる。
生物学的には、我々のアプローチは転写因子の役割を担い、細胞の分化を促進する特定のタンパク質への遺伝子マッピングを調節する。
論文 参考訳(メタデータ) (2020-06-22T11:41:57Z) - Brain-inspired self-organization with cellular neuromorphic computing
for multimodal unsupervised learning [0.0]
本稿では,自己組織マップとヘビアン様学習を用いた再突入理論に基づく脳刺激型ニューラルシステムを提案する。
システムトポロジがユーザによって固定されるのではなく,自己組織化によって学習されるような,いわゆるハードウェアの可塑性の獲得について述べる。
論文 参考訳(メタデータ) (2020-04-11T21:02:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。