論文の概要: Novel-view X-ray Projection Synthesis through Geometry-Integrated Deep Learning
- arxiv url: http://arxiv.org/abs/2504.11953v1
- Date: Wed, 16 Apr 2025 10:30:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 14:38:46.051030
- Title: Novel-view X-ray Projection Synthesis through Geometry-Integrated Deep Learning
- Title(参考訳): 幾何学統合深層学習による新しいX線プロジェクション合成
- Authors: Daiqi Liu, Fuxin Fan, Andreas Maier,
- Abstract要約: DL-GIPSモデルは1つの既存の投影を利用して新しい視点からX線投影を合成する。
このモデルは、初期投影から抽出した幾何学的特徴とテクスチャ的特徴を戦略的に操り、新しい視角に合わせる。
そして、改良された幾何学的特徴と一貫したテクスチャ情報とを融合して、高度な画像生成プロセスを通じて最終的な投影を合成する。
- 参考スコア(独自算出の注目度): 3.4916237834391874
- License:
- Abstract: X-ray imaging plays a crucial role in the medical field, providing essential insights into the internal anatomy of patients for diagnostics, image-guided procedures, and clinical decision-making. Traditional techniques often require multiple X-ray projections from various angles to obtain a comprehensive view, leading to increased radiation exposure and more complex clinical processes. This paper explores an innovative approach using the DL-GIPS model, which synthesizes X-ray projections from new viewpoints by leveraging a single existing projection. The model strategically manipulates geometry and texture features extracted from an initial projection to match new viewing angles. It then synthesizes the final projection by merging these modified geometry features with consistent texture information through an advanced image generation process. We demonstrate the effectiveness and broad applicability of the DL-GIPS framework through lung imaging examples, highlighting its potential to revolutionize stereoscopic and volumetric imaging by minimizing the need for extensive data acquisition.
- Abstract(参考訳): 医療分野ではX線画像が重要な役割を担い、診断、画像誘導手術、臨床診断のための患者の内部解剖に関する重要な洞察を提供する。
従来の技術では、様々な角度から複数のX線投影を必要とすることが多く、放射線照射の増加とより複雑な臨床プロセスをもたらす。
本稿では,1つの既存投影を利用して新しい視点からX線投影を合成するDL-GIPSモデルを用いた革新的なアプローチについて検討する。
このモデルは、初期投影から抽出した幾何学的特徴とテクスチャ的特徴を戦略的に操り、新しい視角に合わせる。
そして、改良された幾何学的特徴と一貫したテクスチャ情報とを融合して、高度な画像生成プロセスを通じて最終的な投影を合成する。
肺画像の例を通して, DL-GIPSフレームワークの有効性と適用性を実証し, 広範囲なデータ取得の必要性を最小化することにより, 立体像と体積像に革命をもたらす可能性を強調した。
関連論文リスト
- TomoGRAF: A Robust and Generalizable Reconstruction Network for Single-View Computed Tomography [3.1209855614927275]
従来の解析的・定性的なCT再構成アルゴリズムは数百の角データサンプリングを必要とする。
我々は,高品質な3Dボリュームを再構成するために,ユニークなX線輸送物理を取り入れた新しいTtomoGRAFフレームワークを開発した。
論文 参考訳(メタデータ) (2024-11-12T20:07:59Z) - XProspeCT: CT Volume Generation from Paired X-Rays [0.0]
我々は、X線画像をシミュレーションCTボリュームに変換するために、以前の研究に基づいて構築した。
モデルバリエーションには、UNetアーキテクチャ、カスタム接続、アクティベーション関数、損失関数、新しいバックプロジェクションアプローチなどがある。
論文 参考訳(メタデータ) (2024-02-11T21:57:49Z) - GM-NeRF: Learning Generalizable Model-based Neural Radiance Fields from
Multi-view Images [79.39247661907397]
本稿では,自由視点画像の合成に有効なフレームワークであるGeneralizable Model-based Neural Radiance Fieldsを提案する。
具体的には、多視点2D画像からの出現コードを幾何学的プロキシに登録するための幾何学誘導型アテンション機構を提案する。
論文 参考訳(メタデータ) (2023-03-24T03:32:02Z) - Vision-Language Generative Model for View-Specific Chest X-ray Generation [18.347723213970696]
ViewXGenは、フロントビュー胸部X線を生成する既存のメソッドの制限を克服するように設計されている。
提案手法は, データセット内の多様な視線位置を考慮し, 特定の視線を用いた胸部X線の生成を可能にする。
論文 参考訳(メタデータ) (2023-02-23T17:13:25Z) - Orientation-Shared Convolution Representation for CT Metal Artifact
Learning [63.67718355820655]
X線CT(CT)スキャン中、患者を乗せた金属インプラントは、しばしば有害なアーティファクトに繋がる。
既存のディープラーニングベースの手法は、有望な再構築性能を得た。
本稿では,人工物の物理的事前構造に適応するために,配向型畳み込み表現戦略を提案する。
論文 参考訳(メタデータ) (2022-12-26T13:56:12Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
オプトアコースティック(OA)イメージングは、ナノ秒レーザーパルスによる生体組織の励起と、光吸収による熱弾性膨張によって発生する超音波の検出に基づいている。
OAイメージングは、深部組織における豊富な光学コントラストと高分解能の強力な組み合わせを特徴としている。
臨床環境でのOAの幅広い応用を促進するために、異なるタイプの実験的なセットアップと関連する処理手法で生成される標準化データセットは存在しない。
論文 参考訳(メタデータ) (2022-06-17T08:11:26Z) - MedNeRF: Medical Neural Radiance Fields for Reconstructing 3D-aware
CT-Projections from a Single X-ray [14.10611608681131]
過剰な電離放射線は、体に決定論的かつ有害な影響をもたらす可能性がある。
本稿では,CTプロジェクションの再構成を学習する深層学習モデルを提案する。
論文 参考訳(メタデータ) (2022-02-02T13:25:23Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - A Geometry-Informed Deep Learning Framework for Ultra-Sparse 3D
Tomographic Image Reconstruction [13.44786774177579]
超疎3次元トモグラフィ画像再構成のための幾何学インフォームド深層学習フレームワークを構築した。
本研究は,3次元CT画像の高精細化を実現するために,既知の先行画像のシームレスな包摂が不可欠であることを実証する。
論文 参考訳(メタデータ) (2021-05-25T06:20:03Z) - XraySyn: Realistic View Synthesis From a Single Radiograph Through CT
Priors [118.27130593216096]
放射線写真は、X線を用いて患者の内部解剖を視覚化し、3D情報を2次元平面に投影する。
私たちの知る限りでは、ラジオグラフィビューの合成に関する最初の研究である。
本手法は,3次元空間におけるX線撮影の理解を得ることにより,地中骨ラベルを使わずに,X線撮影による骨抽出と骨抑制に応用できることが示唆された。
論文 参考訳(メタデータ) (2020-12-04T05:08:53Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。