論文の概要: Who Said Only Military Officers Can Deal with Uncertainty? On the Importance of Uncertainty in EdTech Data Visualisations
- arxiv url: http://arxiv.org/abs/2504.11974v1
- Date: Wed, 16 Apr 2025 11:11:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 14:40:09.109721
- Title: Who Said Only Military Officers Can Deal with Uncertainty? On the Importance of Uncertainty in EdTech Data Visualisations
- Title(参考訳): EdTechのデータビジュアライゼーションにおける不確実性の重要性について
- Authors: Felicitas Macgilchrist, Juliane Jarke,
- Abstract要約: 本稿では,教育用予測分析プラットフォームからデータ視覚化を初めて分析するための重要な投機的アプローチについて述べる。
教育における不確実性の可視化はまれである。
第2に、他の分野(防衛、気候変動、医療)における不確実性可視化について検討する。
- 参考スコア(独自算出の注目度): 0.46040036610482665
- License:
- Abstract: AI-powered predictive systems have high margins of error. However, data visualisations of algorithmic systems in education and other social fields tend to visualise certainty, thus invisibilising the underlying approximations and uncertainties of the algorithmic systems and the social settings in which these systems operate. This paper draws on a critical speculative approach to first analyse data visualisations from predictive analytics platforms for education. It demonstrates that visualisations of uncertainty in education are rare. Second, the paper explores uncertainty visualisations in other fields (defence, climate change and healthcare). The paper concludes by reflecting on the role of data visualisations and un/certainty in shaping educational futures. It also identifies practical implications for the design of data visualisations in education.
- Abstract(参考訳): AIによる予測システムはエラー率が高い。
しかしながら、教育やその他の社会分野におけるアルゴリズムシステムのデータの可視化は、確実性を可視化する傾向にあり、それによってアルゴリズムシステムの根底にある近似や不確実性や、これらのシステムが機能する社会環境を視認する。
本稿では,教育用予測分析プラットフォームからデータ視覚化を初めて分析するための重要な投機的アプローチについて述べる。
教育における不確実性の可視化はまれである。
第2に、他の分野(防衛、気候変動、医療)における不確実性可視化について検討する。
この論文は、データ可視化と教育の未来形成における不確実性の役割を反映して締めくくっている。
また、教育におけるデータビジュアライゼーションの設計に関する実践的な意味も特定する。
関連論文リスト
- Multimodal Approaches to Fair Image Classification: An Ethical Perspective [0.0]
この論文は、公正な画像分類モデルの開発における技術と倫理の交差を探求する。
私は、有害な人口統計バイアスに対処するために、複数のモダリティを使用する公平さと方法の改善に重点を置いている。
この研究は、画像データセットや分類アルゴリズムにおける既存のバイアスを批判的に検討し、これらのバイアスを緩和するための革新的な方法を提案し、そのようなシステムを現実のシナリオに展開する際の倫理的影響を評価する。
論文 参考訳(メタデータ) (2024-12-11T19:58:31Z) - Uncertainties of Latent Representations in Computer Vision [2.33877878310217]
この論文は、事前訓練されたコンピュータビジョンモデルの潜在表現ベクトルにそれらを追加することで、不確実性推定を容易にアクセスできるようにする。
観測不可能な潜在表現に関するこれらの観測不可能な不確実性は、確実に正しいことを示す。
論文 参考訳(メタデータ) (2024-08-26T14:02:30Z) - Fairness and Bias Mitigation in Computer Vision: A Survey [61.01658257223365]
コンピュータビジョンシステムは、高精細な現実世界のアプリケーションにますますデプロイされている。
歴史的または人為的なデータにおいて差別的な傾向を伝播または増幅しないことを確実にする必要がある。
本稿では,コンピュータビジョンの文脈における現在進行中の傾向と成功をまとめた,公平性に関する総合的な調査を行う。
論文 参考訳(メタデータ) (2024-08-05T13:44:22Z) - Toward Fairer Face Recognition Datasets [69.04239222633795]
顔認識と検証は、ディープ表現の導入によってパフォーマンスが向上したコンピュータビジョンタスクである。
実際のトレーニングデータセットにおける顔データとバイアスのセンシティブな性格による倫理的、法的、技術的な課題は、彼らの開発を妨げる。
生成されたトレーニングデータセットに階層属性のバランス機構を導入することにより、公平性を促進する。
論文 参考訳(メタデータ) (2024-06-24T12:33:21Z) - A Survey of Imbalanced Learning on Graphs: Problems, Techniques, and
Future Directions [64.84521350148513]
グラフは、現実世界の無数に存在する相互接続構造を表す。
グラフ学習方法のような効果的なグラフ分析により、ユーザはグラフデータから深い洞察を得ることができる。
しかし、これらの手法はデータ不均衡に悩まされることが多く、グラフデータでは、あるセグメントが豊富なデータを持っているのに、他のセグメントが不足しているのが一般的な問題である。
これは、より正確で代表的な学習結果のために、これらのデータ分散スキューを補正することを目的として、グラフ上の不均衡学習の出現する分野を必要とする。
論文 参考訳(メタデータ) (2023-08-26T09:11:44Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - Sources of Uncertainty in Supervised Machine Learning -- A Statisticians' View [3.0932932099777024]
監視された機械学習と予測モデルは、今日、印象的な標準を達成し、数年前には理解できなかった質問に答えることが可能になった。
純粋な予測を超えて 不確実性の定量化も重要で必要です
本稿では,概念的,基礎的な科学的な視点を採用し,不確実性の原因について検討する。
論文 参考訳(メタデータ) (2023-05-26T07:44:19Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
近年の予測機械学習の進歩は、製造における様々なユースケースに応用されている。
ほとんどの研究は、それに関連する不確実性に対処することなく予測精度を最大化することに焦点を当てた。
本稿では,機械学習における不確実性の原因を特定し,不確実性下での機械学習システムの成功基準を確立する。
論文 参考訳(メタデータ) (2021-07-28T10:28:05Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
我々は,モデル予測に関連する不確実性を推定し,伝達することにより,相補的な透明性の形式を考えることについて議論する。
モデルの不公平性を緩和し、意思決定を強化し、信頼できるシステムを構築するために不確実性がどのように使われるかを説明する。
この研究は、機械学習、可視化/HCI、デザイン、意思決定、公平性にまたがる文学から引き出された学際的レビューを構成する。
論文 参考訳(メタデータ) (2020-11-15T17:26:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。