Bayesian dynamic borrowing considering semantic similarity between outcomes for disproportionality analysis in FAERS
- URL: http://arxiv.org/abs/2504.12052v2
- Date: Thu, 17 Apr 2025 13:49:27 GMT
- Title: Bayesian dynamic borrowing considering semantic similarity between outcomes for disproportionality analysis in FAERS
- Authors: François Haguinet, Jeffery L Painter, Gregory E Powell, Andrea Callegaro, Andrew Bate,
- Abstract summary: We present a Bayesian dynamic borrowing (BDB) approach to enhance the quantitative identification of adverse events (AEs) in spontaneous reporting systems (SRSs)<n>The method embeds a robust meta-analytic predictive (MAP) prior within a Bayesian hierarchical model and incorporates semantic similarity measures (SSMs)<n>Using data from the FDA Adverse Event Reporting System (FAERS) between 2015 and 2019, we evaluate this approach against standard Information Component (IC) analysis and IC with borrowing at the MedDRA high-level group term (HLGT) level.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a Bayesian dynamic borrowing (BDB) approach to enhance the quantitative identification of adverse events (AEs) in spontaneous reporting systems (SRSs). The method embeds a robust meta-analytic predictive (MAP) prior within a Bayesian hierarchical model and incorporates semantic similarity measures (SSMs) to enable weighted information sharing from MedDRA Preferred Terms (PTs) that are clinically similar to the target PT. This continuous similarity-based borrowing addresses limitation of rigid hierarchical grouping in current disproportionality analysis (DPA). Using data from the FDA Adverse Event Reporting System (FAERS) between 2015 and 2019, we evaluate this approach - termed IC SSM - against standard Information Component (IC) analysis and IC with borrowing at the MedDRA high-level group term (HLGT) level. A novel references set (PVLens), derived from FDA product label updates, enabled prospective evaluation of method performance in identifying AEs prior to official labeling. The IC SSM approach demonstrated improved sensitivity compared to both traditional IC and HLGT-based borrowing, with minor trade-offs in F1 scores and Youden's index. IC SSM consistently identified more true positives and detected signals over 5 months sooner than traditional IC. Despite a marginally lower aggregate Youden's index, IC SSM showed higher performance in the early post-marketing period, providing more stable and relevant estimates than HLGT-based borrowing and traditional IC. These findings support the use of SSM-informed Bayesian borrowing as a scalable and context-aware enhancement to traditional DPA methods. Future research should validate this approach across other datasets and explore additional similarity metrics and Bayesian inference strategies using case-level data.
Related papers
- iADCPS: Time Series Anomaly Detection for Evolving Cyber-physical Systems via Incremental Meta-learning [4.3965633777497795]
Anomaly detection for cyber-physical systems (ADCPS) is crucial in identifying faults and potential attacks.<n>We propose an incremental meta-learning-based approach, namely iADCPS, which can continuously update the model.<n>We empirically evaluate the effectiveness of the iADCPS using three publicly available PUMP datasets.
arXiv Detail & Related papers (2025-04-06T06:02:31Z) - Ontology-based Semantic Similarity Measures for Clustering Medical Concepts in Drug Safety [0.0]
Six semantic similarity measures (SSMs) were evaluated for clustering MedDRA Preferred Terms (PTs) in drug safety data.<n>We found that intrinsic information content (IC)-based measures, especially INTRINSIC-LIN and SOKAL, consistently yield better clustering accuracy.<n>Our findings highlight the promise of IC-based SSMs in enhancing pharmacovigilance by improving early signal detection and reducing manual review.
arXiv Detail & Related papers (2025-03-26T17:19:00Z) - Utilizing Causal Network Markers to Identify Tipping Points ahead of Critical Transition [6.7741619010943]
This paper introduces a framework of causal network markers (CNMs) by incorporating causality indicators.<n>To detect and identify the tipping points ahead of critical transition, two markers are designed.<n>The most possible direction for application includes the identification of tipping points in clinical disease.
arXiv Detail & Related papers (2024-12-19T05:10:47Z) - Disentangled Noisy Correspondence Learning [56.06801962154915]
Cross-modal retrieval is crucial in understanding latent correspondences across modalities.
DisNCL is a novel information-theoretic framework for feature Disentanglement in Noisy Correspondence Learning.
arXiv Detail & Related papers (2024-08-10T09:49:55Z) - Decentralized Smoothing ADMM for Quantile Regression with Non-Convex Sparse Penalties [3.269165283595478]
In the rapidly evolving internet-of-things (IoT) ecosystem, effective data analysis techniques are crucial for handling distributed data generated by sensors.
Addressing the limitations of existing methods, such as the sub-gradient consensus approach, which fails to distinguish between active and non-active coefficients.
arXiv Detail & Related papers (2024-08-02T15:00:04Z) - Exploring Hierarchical Classification Performance for Time Series Data:
Dissimilarity Measures and Classifier Comparisons [0.0]
This study investigates the comparative performance of hierarchical classification (HC) and flat classification (FC) methodologies in time series data analysis.
Dissimilarity measures, including Jensen-Shannon Distance (JSD), Task Similarity Distance (TSD), and Based Distance (CBD) are leveraged.
arXiv Detail & Related papers (2024-02-07T21:46:26Z) - Weakly supervised covariance matrices alignment through Stiefel matrices
estimation for MEG applications [64.20396555814513]
This paper introduces a novel domain adaptation technique for time series data, called Mixing model Stiefel Adaptation (MSA)
We exploit abundant unlabeled data in the target domain to ensure effective prediction by establishing pairwise correspondence with equivalent signal variances between domains.
MSA outperforms recent methods in brain-age regression with task variations using magnetoencephalography (MEG) signals from the Cam-CAN dataset.
arXiv Detail & Related papers (2024-01-24T19:04:49Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification.
We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption.
arXiv Detail & Related papers (2023-10-24T02:37:49Z) - Physics Inspired Hybrid Attention for SAR Target Recognition [61.01086031364307]
We propose a physics inspired hybrid attention (PIHA) mechanism and the once-for-all (OFA) evaluation protocol to address the issues.
PIHA leverages the high-level semantics of physical information to activate and guide the feature group aware of local semantics of target.
Our method outperforms other state-of-the-art approaches in 12 test scenarios with same ASC parameters.
arXiv Detail & Related papers (2023-09-27T14:39:41Z) - Simulation-based Inference for Cardiovascular Models [43.55219268578912]
We use simulation-based inference to solve the inverse problem of mapping waveforms back to plausible physiological parameters.<n>We perform an in-silico uncertainty analysis of five biomarkers of clinical interest.<n>We study the gap between in-vivo and in-silico with the MIMIC-III waveform database.
arXiv Detail & Related papers (2023-07-26T02:34:57Z) - Accurate and Reliable Confidence Estimation Based on Non-Autoregressive
End-to-End Speech Recognition System [42.569506907182706]
Previous end-to-end(E2E) based confidence estimation models (CEM) predict score sequences of equal length with input transcriptions, leading to unreliable estimation when deletion and insertion errors occur.
We propose CIF-Aligned confidence estimation model (CA-CEM) to achieve accurate and reliable confidence estimation based on novel non-autoregressive E2E ASR model - Paraformer.
arXiv Detail & Related papers (2023-05-18T03:34:50Z) - Benchmarking common uncertainty estimation methods with
histopathological images under domain shift and label noise [62.997667081978825]
In high-risk environments, deep learning models need to be able to judge their uncertainty and reject inputs when there is a significant chance of misclassification.
We conduct a rigorous evaluation of the most commonly used uncertainty and robustness methods for the classification of Whole Slide Images.
We observe that ensembles of methods generally lead to better uncertainty estimates as well as an increased robustness towards domain shifts and label noise.
arXiv Detail & Related papers (2023-01-03T11:34:36Z) - Ontology-aware Learning and Evaluation for Audio Tagging [56.59107110017436]
Mean average precision (mAP) metric treats different kinds of sound as independent classes without considering their relations.
Ontology-aware mean average precision (OmAP) addresses the weaknesses of mAP by utilizing the AudioSet ontology information during the evaluation.
We conduct human evaluations and demonstrate that OmAP is more consistent with human perception than mAP.
arXiv Detail & Related papers (2022-11-22T11:35:14Z) - AD-BERT: Using Pre-trained contextualized embeddings to Predict the
Progression from Mild Cognitive Impairment to Alzheimer's Disease [14.59521645987661]
We develop a deep learning framework based on the pre-trained Bidirectional Representations from Transformers (BERT) model.
We predict the risk of disease progression from Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD) using unstructured clinical notes.
arXiv Detail & Related papers (2022-11-07T04:05:46Z) - Mitigating the Mutual Error Amplification for Semi-Supervised Object
Detection [92.52505195585925]
We propose a Cross Teaching (CT) method, aiming to mitigate the mutual error amplification by introducing a rectification mechanism of pseudo labels.
In contrast to existing mutual teaching methods that directly treat predictions from other detectors as pseudo labels, we propose the Label Rectification Module (LRM)
arXiv Detail & Related papers (2022-01-26T03:34:57Z) - Autoregressive Hidden Markov Models with partial knowledge on latent
space applied to aero-engines prognostics [2.179313476241343]
This paper describes an Autoregressive Partially-hidden Markov model (ARPHMM) for fault detection and prognostics of equipments based on sensors' data.
We show how to apply this model to estimate the remaining useful life based on health indicators.
arXiv Detail & Related papers (2021-05-01T10:23:22Z) - COVI-AgentSim: an Agent-based Model for Evaluating Methods of Digital
Contact Tracing [68.68882022019272]
COVI-AgentSim is an agent-based compartmental simulator based on virology, disease progression, social contact networks, and mobility patterns.
We use COVI-AgentSim to perform cost-adjusted analyses comparing no DCT to: 1) standard binary contact tracing (BCT) that assigns binary recommendations based on binary test results; and 2) a rule-based method for feature-based contact tracing (FCT) that assigns a graded level of recommendation based on diverse individual features.
arXiv Detail & Related papers (2020-10-30T00:47:01Z) - Repulsive Mixture Models of Exponential Family PCA for Clustering [127.90219303669006]
The mixture extension of exponential family principal component analysis ( EPCA) was designed to encode much more structural information about data distribution than the traditional EPCA.
The traditional mixture of local EPCAs has the problem of model redundancy, i.e., overlaps among mixing components, which may cause ambiguity for data clustering.
In this paper, a repulsiveness-encouraging prior is introduced among mixing components and a diversified EPCA mixture (DEPCAM) model is developed in the Bayesian framework.
arXiv Detail & Related papers (2020-04-07T04:07:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.