Refining the Understanding of Operator Size Dynamics in Open Quantum Systems
- URL: http://arxiv.org/abs/2504.12056v1
- Date: Wed, 16 Apr 2025 13:10:15 GMT
- Title: Refining the Understanding of Operator Size Dynamics in Open Quantum Systems
- Authors: Haolin Jiang, Pengfei Zhang,
- Abstract summary: Information scrambling refers to the phenomenon in which local quantum information in a many-body system becomes dispersed throughout the entire system under unitary evolution.<n>Two different definitions of operator size distributions emerge when extending the study of operator size dynamics to open quantum systems.<n>We use the solvable Brownian SYK models at generic system size to establish a unified picture for operator size dynamics in open quantum systems.
- Score: 6.189388667759078
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Information scrambling refers to the phenomenon in which local quantum information in a many-body system becomes dispersed throughout the entire system under unitary evolution. It has been extensively studied in closed quantum systems, where it is quantified by operator size growth, revealing deep connections between condensed matter physics, high-energy physics, and quantum information. However, when extending the study of operator size dynamics to open quantum systems, two different definitions of operator size distributions emerge. These definitions are based on different treatments of the bath. In this work, we aim to establish a unified picture for operator size dynamics in open quantum systems, using the solvable Brownian SYK models at generic system size. In particular, we provide the conditions under which the signature of scrambling transition, discovered using one particular definition, appears in operator size dynamics under the other definition. Additionally, we extend previous studies by exploring finite-size effects that are not captured by the scramblon theory. Our results provide a refined understanding of operator size dynamics in open quantum systems.
Related papers
- Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [43.80709028066351]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.<n>This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Scrambling and operator entanglement in local non-Hermitian quantum
systems [0.0]
We study information scrambling and quantum chaos in non-Hermitian variants of paradigmatic local quantum spin-chain models.
We extend operator entanglement based diagnostics from previous works on closed and open quantum systems to the new arena of monitored quantum dynamics.
arXiv Detail & Related papers (2023-05-20T01:35:38Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Dynamical Transition of Operator Size Growth in Quantum Systems Embedded
in an Environment [6.659260341668616]
We predict a transition in quantum systems with all-to-all interactions accompanied by an environment.
The transition is driven by the competition between the system intrinsic and environment propelled scramblings and the environment induced dissipation.
Our study sheds light on the fundamental behavior of quantum systems in the presence of an environment.
arXiv Detail & Related papers (2022-11-07T13:21:50Z) - Operator Growth in Open Quantum Systems [0.4351216340655199]
We provide a universal framework that describes the scrambling of quantum information in open systems.
We show that open quantum systems exhibit universal classes of information dynamics that fundamentally differ from their unitary counterparts.
arXiv Detail & Related papers (2022-08-25T18:00:00Z) - Scrambling of Algebras in Open Quantum Systems [0.0]
We introduce an algebraic OTOC ($mathcalA$-OTOC) that allows us to study information scrambling of quantum subsystems under quantum channels.
For closed quantum systems, this framework was recently employed to unify quantum information-theoretic notions of operator entanglement, coherence-generating power, and Loschmidt echo.
Our numerical results reveal connections with many-body scars and the stability of decoherence-free subspaces.
arXiv Detail & Related papers (2022-06-04T17:54:41Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Tracing Information Flow from Open Quantum Systems [52.77024349608834]
We use photons in a waveguide array to implement a quantum simulation of the coupling of a qubit with a low-dimensional discrete environment.
Using the trace distance between quantum states as a measure of information, we analyze different types of information transfer.
arXiv Detail & Related papers (2021-03-22T16:38:31Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.