SIDME: Self-supervised Image Demoiréing via Masked Encoder-Decoder Reconstruction
- URL: http://arxiv.org/abs/2504.12245v1
- Date: Wed, 16 Apr 2025 16:50:41 GMT
- Title: SIDME: Self-supervised Image Demoiréing via Masked Encoder-Decoder Reconstruction
- Authors: Xia Wang, Haiyang Sun, Tiantian Cao, Yueying Sun, Min Feng,
- Abstract summary: Moir'e patterns, resulting from aliasing between object light signals and camera sampling frequencies, often degrade image quality during capture.<n> SIDME is a novel model designed to generate high-quality visual images by effectively processing moir'e patterns.
- Score: 6.345037597566313
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Moir\'e patterns, resulting from aliasing between object light signals and camera sampling frequencies, often degrade image quality during capture. Traditional demoir\'eing methods have generally treated images as a whole for processing and training, neglecting the unique signal characteristics of different color channels. Moreover, the randomness and variability of moir\'e pattern generation pose challenges to the robustness of existing methods when applied to real-world data. To address these issues, this paper presents SIDME (Self-supervised Image Demoir\'eing via Masked Encoder-Decoder Reconstruction), a novel model designed to generate high-quality visual images by effectively processing moir\'e patterns. SIDME combines a masked encoder-decoder architecture with self-supervised learning, allowing the model to reconstruct images using the inherent properties of camera sampling frequencies. A key innovation is the random masked image reconstructor, which utilizes an encoder-decoder structure to handle the reconstruction task. Furthermore, since the green channel in camera sampling has a higher sampling frequency compared to red and blue channels, a specialized self-supervised loss function is designed to improve the training efficiency and effectiveness. To ensure the generalization ability of the model, a self-supervised moir\'e image generation method has been developed to produce a dataset that closely mimics real-world conditions. Extensive experiments demonstrate that SIDME outperforms existing methods in processing real moir\'e pattern data, showing its superior generalization performance and robustness.
Related papers
- Wavelet-Driven Masked Image Modeling: A Path to Efficient Visual Representation [27.576174611043367]
Masked Image Modeling (MIM) has garnered significant attention in self-supervised learning, thanks to its impressive capacity to learn scalable visual representations tailored for downstream tasks.<n>However, images inherently contain abundant redundant information, leading the pixel-based MIM reconstruction process to focus excessively on finer details such as textures, thus prolonging training times unnecessarily.<n>In this study, we leverage wavelet transform as a tool for efficient representation learning to expedite the training process of MIM.
arXiv Detail & Related papers (2025-03-02T08:11:26Z) - Time Step Generating: A Universal Synthesized Deepfake Image Detector [0.4488895231267077]
We propose a universal synthetic image detector Time Step Generating (TSG)
TSG does not rely on pre-trained models' reconstructing ability, specific datasets, or sampling algorithms.
We test the proposed TSG on the large-scale GenImage benchmark and it achieves significant improvements in both accuracy and generalizability.
arXiv Detail & Related papers (2024-11-17T09:39:50Z) - Multi-scale Frequency Enhancement Network for Blind Image Deblurring [7.198959621445282]
We propose a multi-scale frequency enhancement network (MFENet) for blind image deblurring.
To capture the multi-scale spatial and channel information of blurred images, we introduce a multi-scale feature extraction module (MS-FE) based on depthwise separable convolutions.
We demonstrate that the proposed method achieves superior deblurring performance in both visual quality and objective evaluation metrics.
arXiv Detail & Related papers (2024-11-11T11:49:18Z) - Cross-Scan Mamba with Masked Training for Robust Spectral Imaging [51.557804095896174]
We propose the Cross-Scanning Mamba, named CS-Mamba, that employs a Spatial-Spectral SSM for global-local balanced context encoding.<n>Experiment results show that our CS-Mamba achieves state-of-the-art performance and the masked training method can better reconstruct smooth features to improve the visual quality.
arXiv Detail & Related papers (2024-08-01T15:14:10Z) - DiffiT: Diffusion Vision Transformers for Image Generation [88.08529836125399]
Vision Transformer (ViT) has demonstrated strong modeling capabilities and scalability, especially for recognition tasks.
We study the effectiveness of ViTs in diffusion-based generative learning and propose a new model denoted as Diffusion Vision Transformers (DiffiT)
DiffiT is surprisingly effective in generating high-fidelity images with significantly better parameter efficiency.
arXiv Detail & Related papers (2023-12-04T18:57:01Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
Diffusion model-based image restoration (IR) aims to use diffusion models to recover high-quality (HQ) images from degraded images, achieving promising performance.
Most existing methods need long serial sampling chains to restore HQ images step-by-step, resulting in expensive sampling time and high computation costs.
In this work, we aim to rethink the diffusion model-based IR models through a different perspective, i.e., a deep equilibrium (DEQ) fixed point system, called DeqIR.
arXiv Detail & Related papers (2023-11-20T08:27:56Z) - Improving Masked Autoencoders by Learning Where to Mask [65.89510231743692]
Masked image modeling is a promising self-supervised learning method for visual data.
We present AutoMAE, a framework that uses Gumbel-Softmax to interlink an adversarially-trained mask generator and a mask-guided image modeling process.
In our experiments, AutoMAE is shown to provide effective pretraining models on standard self-supervised benchmarks and downstream tasks.
arXiv Detail & Related papers (2023-03-12T05:28:55Z) - MaskSketch: Unpaired Structure-guided Masked Image Generation [56.88038469743742]
MaskSketch is an image generation method that allows spatial conditioning of the generation result using a guiding sketch as an extra conditioning signal during sampling.
We show that intermediate self-attention maps of a masked generative transformer encode important structural information of the input image.
Our results show that MaskSketch achieves high image realism and fidelity to the guiding structure.
arXiv Detail & Related papers (2023-02-10T20:27:02Z) - Neural Data-Dependent Transform for Learned Image Compression [72.86505042102155]
We build a neural data-dependent transform and introduce a continuous online mode decision mechanism to jointly optimize the coding efficiency for each individual image.
The experimental results show the effectiveness of the proposed neural-syntax design and the continuous online mode decision mechanism.
arXiv Detail & Related papers (2022-03-09T14:56:48Z) - Recursive Self-Improvement for Camera Image and Signal Processing
Pipeline [6.318974730864278]
Current camera image and signal processing pipelines (ISPs) tend to apply a single filter that is uniformly applied to the entire image.
This despite the fact that most acquired camera images have spatially heterogeneous artifacts.
We present a deep reinforcement learning model that works in learned latent subspaces.
arXiv Detail & Related papers (2021-11-15T02:23:40Z) - SIR: Self-supervised Image Rectification via Seeing the Same Scene from
Multiple Different Lenses [82.56853587380168]
We propose a novel self-supervised image rectification (SIR) method based on an important insight that the rectified results of distorted images of the same scene from different lens should be the same.
We leverage a differentiable warping module to generate the rectified images and re-distorted images from the distortion parameters.
Our method achieves comparable or even better performance than the supervised baseline method and representative state-of-the-art methods.
arXiv Detail & Related papers (2020-11-30T08:23:25Z) - Convolutional Autoencoder for Blind Hyperspectral Image Unmixing [0.0]
spectral unmixing is a technique to decompose a mixed pixel into two fundamental representatives: endmembers and abundances.
In this paper, a novel architecture is proposed to perform blind unmixing on hyperspectral images.
arXiv Detail & Related papers (2020-11-18T17:41:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.