論文の概要: Future Artificial Intelligence tools and perspectives in medicine
- arxiv url: http://arxiv.org/abs/2206.03289v1
- Date: Sat, 4 Jun 2022 11:27:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-12 10:02:25.005236
- Title: Future Artificial Intelligence tools and perspectives in medicine
- Title(参考訳): 未来の人工知能ツールと医学の展望
- Authors: Ahmad Chaddad, Yousef Katib, Lama Hassan
- Abstract要約: 現在、がんの限られた管理は人工知能の恩恵を受けており、主にコンピューター支援診断に関連しており、追加のリスクとコストを示す生検分析を避けている。
本稿では,臨床応用のためのAIベースの放射線治療ツールの進歩について概説する。
- 参考スコア(独自算出の注目度): 1.7532045941271799
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Purpose of review: Artificial intelligence (AI) has become popular in medical
applications, specifically as a clinical support tool for computer-aided
diagnosis. These tools are typically employed on medical data (i.e., image,
molecular data, clinical variables, etc.) and used the statistical and machine
learning methods to measure the model performance. In this review, we
summarized and discussed the most recent radiomic pipeline used for clinical
analysis. Recent findings:Currently, limited management of cancers benefits
from artificial intelligence, mostly related to a computer-aided diagnosis that
avoids a biopsy analysis that presents additional risks and costs. Most AI
tools are based on imaging features, known as radiomic analysis that can be
refined into predictive models in non-invasively acquired imaging data. This
review explores the progress of AI-based radiomic tools for clinical
applications with a brief description of necessary technical steps. Explaining
new radiomic approaches based on deep learning techniques will explain how the
new radiomic models (deep radiomic analysis) can benefit from deep
convolutional neural networks and be applied on limited data sets. Summary: To
consider the radiomic algorithms, further investigations are recommended to
involve deep learning in radiomic models with additional validation steps on
various cancer types.
- Abstract(参考訳): レビューの目的:人工知能(AI)は医学的応用、特にコンピュータ支援診断のための臨床支援ツールとして人気を博している。
これらのツールは典型的には医療データ(画像、分子データ、臨床変数など)に使用され、統計学的および機械学習手法を用いてモデルの性能を測定する。
本稿では,臨床解析に用いる最新の放射線パイプラインについて概説した。
最近の発見:現在、がんの管理は人工知能の恩恵を受けており、主に、さらなるリスクとコストをもたらす生検分析を避けるコンピュータ支援診断に関連している。
ほとんどのAIツールは、非侵襲的に取得された画像データにおいて予測モデルに洗練された放射線分析として知られるイメージング機能に基づいている。
本稿では,臨床応用のためのAIベースの放射線治療ツールの進歩について概説する。
深層学習技術に基づく新しい放射線学アプローチを説明することで、新しい放射線モデル(深層放射線分析)が深層畳み込みニューラルネットワークの恩恵を受け、限られたデータセットに適用できるかを説明することができる。
まとめ: 放射線アルゴリズムを検討するためには, 放射線モデルに深層学習を取り入れ, 各種がんの検証手順を追加することを推奨する。
関連論文リスト
- The Era of Foundation Models in Medical Imaging is Approaching : A Scoping Review of the Clinical Value of Large-Scale Generative AI Applications in Radiology [0.0]
放射線技師の不足に起因する社会問題は激化しており、人工知能は潜在的な解決策として強調されている。
最近出現する大規模生成AIは、大規模言語モデル(LLM)からマルチモーダルモデルへと拡張されている。
このスコーピングレビューは、大規模生成型AIアプリケーションの臨床的価値に関する既存の文献を体系的に整理する。
論文 参考訳(メタデータ) (2024-09-03T00:48:50Z) - Automated Radiology Report Generation: A Review of Recent Advances [5.965255286239531]
人工知能の最近の技術進歩は、自動放射線学レポート生成に大きな可能性を示している。
人工知能の最近の進歩は、自動放射線診断レポート生成に大きな可能性を示している。
論文 参考訳(メタデータ) (2024-05-17T15:06:08Z) - CopilotCAD: Empowering Radiologists with Report Completion Models and Quantitative Evidence from Medical Image Foundation Models [3.8940162151291804]
本研究は,放射線技師の補助的共同操縦システムを構築するための革新的なパラダイムを紹介する。
我々は,大規模言語モデル(LLM)と医用画像解析ツールを統合する協調フレームワークを開発した。
論文 参考訳(メタデータ) (2024-04-11T01:33:45Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuerは、一般化可能な表現を学習する自動放射線学レポート生成のための調整されたモデルである。
本研究で利用した臨床データセットは,textbf332,673の顕著な総計を含む。
ChatRadio-Valuerは、最先端のモデル、特にChatGPT(GPT-3.5-Turbo)やGPT-4などより一貫して優れている。
論文 参考訳(メタデータ) (2023-10-08T17:23:17Z) - Radiology-Llama2: Best-in-Class Large Language Model for Radiology [71.27700230067168]
本稿では,ラジオロジーに特化した大規模言語モデルであるRadiology-Llama2を紹介する。
MIMIC-CXRとOpenIデータセットのROUGEメトリクスを用いた定量的評価は、Radiology-Llama2が最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2023-08-29T17:44:28Z) - AI in Thyroid Cancer Diagnosis: Techniques, Trends, and Future
Directions [3.2071249735671348]
本報告では, 甲状腺癌の診断に使用される人工知能(AI)技術に関する大量の論文を要約する。
この研究は、教師なし、教師なし、またはハイブリッド技術を通じて、AIベースのツールが甲状腺癌の診断と治療をどのようにサポートするかに焦点を当てている。
論文 参考訳(メタデータ) (2023-08-25T17:27:53Z) - Artificial Intelligence-Based Detection, Classification and
Prediction/Prognosis in PET Imaging: Towards Radiophenomics [2.2509387878255818]
この研究は、腫瘍学的なPETとPET/CTイメージングに焦点を当てたAIベースの技術についてレビューする。
良性から悪性まで腫瘍組織学のスペクトルがあり、AIベースの分類法で同定できる。
放射線分析は、腫瘍の正確な評価のための非侵襲的手法として利用される可能性がある。
論文 参考訳(メタデータ) (2021-10-20T01:05:47Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
本稿では,乳房超音波画像における癌検出のための新しい深層学習手法であるBI-RADS-Netを紹介する。
提案手法は, 臨床診断に関連する特徴表現を学習することにより, 乳腺腫瘍の説明と分類を行うタスクを取り入れたものである。
臨床医が医療現場で診断・報告するために使用する形態学的特徴の観点から予測(良性または悪性)の説明が提供される。
論文 参考訳(メタデータ) (2021-10-05T19:14:46Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Medical Instrument Detection in Ultrasound-Guided Interventions: A
Review [74.22397862400177]
本稿では,超音波ガイド下手術における医療機器検出法について概説する。
まず,従来の非データ駆動手法とデータ駆動手法を含む計器検出手法について概説する。
本研究は, 麻酔, 生検, 前立腺切断療法, 心臓カテーテル治療など, 超音波における医療機器検出の主な臨床応用について論じる。
論文 参考訳(メタデータ) (2020-07-09T13:50:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。