Reconstructing Sepsis Trajectories from Clinical Case Reports using LLMs: the Textual Time Series Corpus for Sepsis
- URL: http://arxiv.org/abs/2504.12326v1
- Date: Sat, 12 Apr 2025 03:07:44 GMT
- Title: Reconstructing Sepsis Trajectories from Clinical Case Reports using LLMs: the Textual Time Series Corpus for Sepsis
- Authors: Shahriar Noroozizadeh, Jeremy C. Weiss,
- Abstract summary: Clinical case reports and discharge summaries may be the most complete and accurate summarization of patient encounters, yet they are finalized, i.e., timestamped after the encounter.<n>We construct a pipeline to phenotype, extract, and annotate time-localized findings within case reports using large language models.
- Score: 7.734726150561087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clinical case reports and discharge summaries may be the most complete and accurate summarization of patient encounters, yet they are finalized, i.e., timestamped after the encounter. Complementary data structured streams become available sooner but suffer from incompleteness. To train models and algorithms on more complete and temporally fine-grained data, we construct a pipeline to phenotype, extract, and annotate time-localized findings within case reports using large language models. We apply our pipeline to generate an open-access textual time series corpus for Sepsis-3 comprising 2,139 case reports from the Pubmed-Open Access (PMOA) Subset. To validate our system, we apply it on PMOA and timeline annotations from I2B2/MIMIC-IV and compare the results to physician-expert annotations. We show high recovery rates of clinical findings (event match rates: O1-preview--0.755, Llama 3.3 70B Instruct--0.753) and strong temporal ordering (concordance: O1-preview--0.932, Llama 3.3 70B Instruct--0.932). Our work characterizes the ability of LLMs to time-localize clinical findings in text, illustrating the limitations of LLM use for temporal reconstruction and providing several potential avenues of improvement via multimodal integration.
Related papers
- A Large-Language Model Framework for Relative Timeline Extraction from PubMed Case Reports [10.869574822060553]
We present a system that transforms case reports into textual time series-structured pairs of textual events and timestamps.<n>This work may serve as a benchmark for leveraging the PMOA corpus for temporal analytics.
arXiv Detail & Related papers (2025-04-15T20:54:19Z) - Temporal Relation Extraction in Clinical Texts: A Span-based Graph Transformer Approach [3.5309406714258764]
We address the task of extracting clinical events and their temporal relations using the well-studied I2B2 2012 Temporal Relations Challenge corpus.
We introduce GRAPHTREX, a novel method integrating span-based entity-relation extraction, clinical large pre-trained language models (LPLMs), and Heterogeneous Graph Transformers (HGT)
This work not only advances temporal information extraction but also lays the groundwork for improved diagnostic and prognostic models through enhanced temporal reasoning.
arXiv Detail & Related papers (2025-03-23T14:34:49Z) - Unlocking Multimodal Integration in EHRs: A Prompt Learning Framework for Language and Time Series Fusion [27.70300880284899]
Large language models (LLMs) have shown remarkable performance in vision-language tasks, but their application in the medical field remains underexplored.<n>We introduce ProMedTS, a novel self-supervised multimodal framework that employs prompt-guided learning to unify data types.<n>We evaluate ProMedTS on disease diagnosis tasks using real-world datasets, and the results demonstrate that our method consistently outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2025-02-19T07:56:48Z) - HC-LLM: Historical-Constrained Large Language Models for Radiology Report Generation [89.3260120072177]
We propose a novel Historical-Constrained Large Language Models (HC-LLM) framework for Radiology report generation.<n>Our approach extracts both time-shared and time-specific features from longitudinal chest X-rays and diagnostic reports to capture disease progression.<n> Notably, our approach performs well even without historical data during testing and can be easily adapted to other multimodal large models.
arXiv Detail & Related papers (2024-12-15T06:04:16Z) - Enhancing In-Hospital Mortality Prediction Using Multi-Representational Learning with LLM-Generated Expert Summaries [3.5508427067904864]
In-hospital mortality (IHM) prediction for ICU patients is critical for timely interventions and efficient resource allocation.
This study integrates structured physiological data and clinical notes with Large Language Model (LLM)-generated expert summaries to improve IHM prediction accuracy.
arXiv Detail & Related papers (2024-11-25T16:36:38Z) - SPEER: Sentence-Level Planning of Long Clinical Summaries via Embedded Entity Retrieval [9.654951710218876]
Clinician must write a lengthy summary each time a patient is discharged from the hospital.
Identifying and covering salient entities is vital for the summary to be clinically useful.
We fine-tune open-source LLMs on the task and find that they generate incomplete and unfaithful summaries.
arXiv Detail & Related papers (2024-01-04T17:23:44Z) - Clairvoyance: A Pipeline Toolkit for Medical Time Series [95.22483029602921]
Time-series learning is the bread and butter of data-driven *clinical decision support*
Clairvoyance proposes a unified, end-to-end, autoML-friendly pipeline that serves as a software toolkit.
Clairvoyance is the first to demonstrate viability of a comprehensive and automatable pipeline for clinical time-series ML.
arXiv Detail & Related papers (2023-10-28T12:08:03Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
We introduce CAPR, a rule-based self-supervision objective for training Transformer language models for domain-specific passage matching.
We apply our objective in four Transformer-based architectures: Contextual Document Vectors, Bi-, Poly- and Cross-encoders.
We report that CAPR outperforms strong baselines in the retrieval of domain-specific passages and effectively generalizes across rule-based and human-labeled passages.
arXiv Detail & Related papers (2021-08-02T10:42:52Z) - Clinical Temporal Relation Extraction with Probabilistic Soft Logic
Regularization and Global Inference [50.029659413650194]
Existing methods either require expensive feature engineering or are incapable of modeling the global dependencies among the events.
In this paper, we propose a novel method, Clinical Temporal ReLation Exaction with Probabilistic Soft Logic Regularization and Global Inference.
arXiv Detail & Related papers (2020-12-16T08:23:03Z) - Learning Contextualized Document Representations for Healthcare Answer
Retrieval [68.02029435111193]
Contextual Discourse Vectors (CDV) is a distributed document representation for efficient answer retrieval from long documents.
Our model leverages a dual encoder architecture with hierarchical LSTM layers and multi-task training to encode the position of clinical entities and aspects alongside the document discourse.
We show that our generalized model significantly outperforms several state-of-the-art baselines for healthcare passage ranking.
arXiv Detail & Related papers (2020-02-03T15:47:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.