MIMIC-\RNum{4}-Ext-22MCTS: A 22 Millions-Event Temporal Clinical Time-Series Dataset with Relative Timestamp for Risk Prediction
- URL: http://arxiv.org/abs/2505.00827v1
- Date: Thu, 01 May 2025 19:40:27 GMT
- Title: MIMIC-\RNum{4}-Ext-22MCTS: A 22 Millions-Event Temporal Clinical Time-Series Dataset with Relative Timestamp for Risk Prediction
- Authors: Jing Wang, Xing Niu, Juyong Kim, Jie Shen, Tong Zhang, Jeremy C. Weiss,
- Abstract summary: This dataset consists of 22,588,586 Clinical Time Series events.<n> discharge summaries selected from the well-known yet unstructured MIMIC-IV-Note.<n>We propose a new framework that works by breaking each discharge summary into manageably small text chunks.
- Score: 26.53949431160399
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clinical risk prediction based on machine learning algorithms plays a vital role in modern healthcare. A crucial component in developing a reliable prediction model is collecting high-quality time series clinical events. In this work, we release such a dataset that consists of 22,588,586 Clinical Time Series events, which we term MIMIC-\RNum{4}-Ext-22MCTS. Our source data are discharge summaries selected from the well-known yet unstructured MIMIC-IV-Note \cite{Johnson2023-pg}. We then extract clinical events as short text span from the discharge summaries, along with the timestamps of these events as temporal information. The general-purpose MIMIC-IV-Note pose specific challenges for our work: it turns out that the discharge summaries are too lengthy for typical natural language models to process, and the clinical events of interest often are not accompanied with explicit timestamps. Therefore, we propose a new framework that works as follows: 1) we break each discharge summary into manageably small text chunks; 2) we apply contextual BM25 and contextual semantic search to retrieve chunks that have a high potential of containing clinical events; and 3) we carefully design prompts to teach the recently released Llama-3.1-8B \cite{touvron2023llama} model to identify or infer temporal information of the chunks. We show that the obtained dataset is so informative and transparent that standard models fine-tuned on our dataset are achieving significant improvements in healthcare applications. In particular, the BERT model fine-tuned based on our dataset achieves 10\% improvement in accuracy on medical question answering task, and 3\% improvement in clinical trial matching task compared with the classic BERT. The GPT-2 model, fine-tuned on our dataset, produces more clinically reliable results for clinical questions.
Related papers
- Extracting Patient History from Clinical Text: A Comparative Study of Clinical Large Language Models [3.1277841304339065]
This study evaluates the performance of clinical large language models (cLLMs) in recognizing medical history entities (MHEs)<n>We annotated 1,449 MHEs across 61 outpatient-related clinical notes from the MTSamples repository.<n>The cLLMs showed potential in reducing the time required for extracting MHEs by over 20%.
arXiv Detail & Related papers (2025-03-30T02:00:56Z) - ProMedTS: A Self-Supervised, Prompt-Guided Multimodal Approach for Integrating Medical Text and Time Series [27.70300880284899]
Large language models (LLMs) have shown remarkable performance in vision-grained tasks, but their application in the medical field remains underexplored.<n>We introduce ProMedTS, a novel self-supervised multimodal framework that employs prompt-guided learning to unify data types.<n>We evaluate ProMedTS on disease diagnosis tasks using real-world datasets, and the results demonstrate that our method consistently outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2025-02-19T07:56:48Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.<n>Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - EMERGE: Enhancing Multimodal Electronic Health Records Predictive Modeling with Retrieval-Augmented Generation [22.94521527609479]
EMERGE is a Retrieval-Augmented Generation (RAG) driven framework to enhance multimodal EHR predictive modeling.<n>We extract entities from time-series data and clinical notes by prompting Large Language Models (LLMs) and align them with professional PrimeKG.<n>The extracted knowledge is then used to generate task-relevant summaries of patients' health statuses.
arXiv Detail & Related papers (2024-05-27T10:53:15Z) - Prompting Large Language Models for Zero-Shot Clinical Prediction with
Structured Longitudinal Electronic Health Record Data [7.815738943706123]
Large Language Models (LLMs) are traditionally tailored for natural language processing.
This research investigates the adaptability of LLMs, like GPT-4, to EHR data.
In response to the longitudinal, sparse, and knowledge-infused nature of EHR data, our prompting approach involves taking into account specific characteristics.
arXiv Detail & Related papers (2024-01-25T20:14:50Z) - Clairvoyance: A Pipeline Toolkit for Medical Time Series [95.22483029602921]
Time-series learning is the bread and butter of data-driven *clinical decision support*
Clairvoyance proposes a unified, end-to-end, autoML-friendly pipeline that serves as a software toolkit.
Clairvoyance is the first to demonstrate viability of a comprehensive and automatable pipeline for clinical time-series ML.
arXiv Detail & Related papers (2023-10-28T12:08:03Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - Time Associated Meta Learning for Clinical Prediction [78.99422473394029]
We propose a novel time associated meta learning (TAML) method to make effective predictions at multiple future time points.
To address the sparsity problem after task splitting, TAML employs a temporal information sharing strategy to augment the number of positive samples.
We demonstrate the effectiveness of TAML on multiple clinical datasets, where it consistently outperforms a range of strong baselines.
arXiv Detail & Related papers (2023-03-05T03:54:54Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
We introduce CAPR, a rule-based self-supervision objective for training Transformer language models for domain-specific passage matching.
We apply our objective in four Transformer-based architectures: Contextual Document Vectors, Bi-, Poly- and Cross-encoders.
We report that CAPR outperforms strong baselines in the retrieval of domain-specific passages and effectively generalizes across rule-based and human-labeled passages.
arXiv Detail & Related papers (2021-08-02T10:42:52Z) - An efficient representation of chronological events in medical texts [9.118144540451514]
We proposed a systematic methodology for learning from chronological events available in clinical notes.
The proposed methodological it path signature framework creates a non-parametric hierarchical representation of sequential events of any type.
The methodology was developed and externally validated using the largest in the UK secondary care mental health EHR data.
arXiv Detail & Related papers (2020-10-16T14:54:29Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.