論文の概要: Leveraging Large Language Models for Multi-Class and Multi-Label Detection of Drug Use and Overdose Symptoms on Social Media
- arxiv url: http://arxiv.org/abs/2504.12355v1
- Date: Wed, 16 Apr 2025 02:33:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:38:33.355305
- Title: Leveraging Large Language Models for Multi-Class and Multi-Label Detection of Drug Use and Overdose Symptoms on Social Media
- Title(参考訳): ソーシャルメディア上での薬物使用および過剰摂取症状のマルチクラス・マルチラベル検出のための大規模言語モデルの導入
- Authors: Muhammad Ahmad, Muhammad Waqas, ldar Batyrshin, Grigori Sidorov,
- Abstract要約: ソーシャルメディアは、自己報告された物質の使用と過剰摂取症状に対するリアルタイムな洞察を提供する。
本研究は、アノテーション付きソーシャルメディアデータに基づいてトレーニングされたAI駆動NLPフレームワークを用いて、一般的に使用される薬物および関連する過剰摂取症状を検出することを提案する。
- 参考スコア(独自算出の注目度): 6.809256769427066
- License:
- Abstract: Drug overdose remains a critical global health issue, often driven by misuse of opioids, painkillers, and psychiatric medications. Traditional research methods face limitations, whereas social media offers real-time insights into self-reported substance use and overdose symptoms. This study proposes an AI-driven NLP framework trained on annotated social media data to detect commonly used drugs and associated overdose symptoms. Using a hybrid annotation strategy with LLMs and human annotators, we applied traditional ML models, neural networks, and advanced transformer-based models. Our framework achieved 98% accuracy in multi-class and 97% in multi-label classification, outperforming baseline models by up to 8%. These findings highlight the potential of AI for supporting public health surveillance and personalized intervention strategies.
- Abstract(参考訳): 薬物過剰摂取は、しばしばオピオイド、鎮痛剤、精神医学薬の誤用によって引き起こされる、重要な世界的な健康問題である。
従来の研究手法は制限に直面し、ソーシャルメディアは自己報告された物質の使用と過剰摂取の症状に対するリアルタイムな洞察を提供する。
本研究は、アノテーション付きソーシャルメディアデータに基づいてトレーニングされたAI駆動NLPフレームワークを用いて、一般的に使用される薬物および関連する過剰摂取症状を検出することを提案する。
従来のMLモデル,ニューラルネットワーク,高度なトランスフォーマーモデルを用いて,LLMとヒューマンアノテータのハイブリッドアノテーション戦略を適用した。
本フレームワークは, マルチクラスで98%, マルチラベル分類で97%, ベースラインモデルで最大8%の精度で性能が向上した。
これらの知見は、公衆衛生監視とパーソナライズされた介入戦略を支援するAIの可能性を強調している。
関連論文リスト
- LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
LlaMADRSは、オープンソースのLarge Language Models(LLM)を利用して、うつ病の重症度評価を自動化する新しいフレームワークである。
本研究は,クリニカルインタヴューの解釈・スコアリングにおけるモデル指導のために,慎重に設計された手がかりを用いたゼロショットプロンプト戦略を用いている。
実世界における236件のインタビューを対象とし,臨床評価と強い相関性を示した。
論文 参考訳(メタデータ) (2025-01-07T08:49:04Z) - Reddit-Impacts: A Named Entity Recognition Dataset for Analyzing Clinical and Social Effects of Substance Use Derived from Social Media [6.138126219622993]
物質利用障害(SUD)は、データ駆動研究を通じて、問題とそのトレンドの理解を深める必要がある、世界的な関心事である。
ソーシャルメディアは、SUDに関するユニークな重要な情報源であり、特にそのような情報源のデータは、生きた経験を持つ人々によってしばしば生成されるためである。
本稿では,処方と違法なオピオイド,およびオピオイド使用障害の薬物に関する議論を専門とするサブレディットからキュレートされた,難解な名前付きエンティティ認識(NER)データセットであるReddit-Impactsを紹介する。
このデータセットは、研究の少ないが重要な、物質利用の側面に特に焦点を絞っている。
論文 参考訳(メタデータ) (2024-05-09T23:43:57Z) - myAURA: Personalized health library for epilepsy management via knowledge graph sparsification and visualization [4.25313339005458]
myAURAは、てんかん患者、介護者、そして研究者がケアや自己管理に関する決定を下すのを助けるために設計されたアプリケーションです。
MyAURAは、生体医学データベース、ソーシャルメディア、電子健康記録などのてんかんに関連する異種データ資源の連合に依存している。
論文 参考訳(メタデータ) (2024-05-08T17:24:24Z) - Large Language Model Distilling Medication Recommendation Model [58.94186280631342]
大規模言語モデル(LLM)の強力な意味理解と入力非依存特性を利用する。
本研究は, LLMを用いて既存の薬剤推奨手法を変換することを目的としている。
これを軽減するため,LLMの習熟度をよりコンパクトなモデルに伝達する機能レベルの知識蒸留技術を開発した。
論文 参考訳(メタデータ) (2024-02-05T08:25:22Z) - Multiscale Topology in Interactomic Network: From Transcriptome to
Antiaddiction Drug Repurposing [0.3683202928838613]
米国における薬物依存の激化は、革新的な治療戦略の緊急の必要性を浮き彫りにしている。
本研究は,オピオイドおよびコカイン依存症治療の薬物再服用候補を探索するための,革新的で厳格な戦略に着手した。
論文 参考訳(メタデータ) (2023-12-03T04:01:38Z) - From Classification to Clinical Insights: Towards Analyzing and Reasoning About Mobile and Behavioral Health Data With Large Language Models [21.427976533706737]
我々は,多センサデータから臨床的に有用な知見を合成するために,大規模言語モデルを活用する新しいアプローチを採っている。
うつ病や不安などの症状とデータの傾向がどのように関連しているかを,LSMを用いて推論する思考促進手法の連鎖を構築した。
GPT-4のようなモデルでは数値データの75%を正確に参照しており、臨床参加者は、この手法を用いて自己追跡データを解釈することへの強い関心を表明している。
論文 参考訳(メタデータ) (2023-11-21T23:53:27Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
本稿では,学習可能な重みに基づくハイブリッド医療画像セグメンテーション手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺がんセグメンテーションタスクの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-15T17:55:05Z) - A Meta-GNN approach to personalized seizure detection and classification [53.906130332172324]
本稿では,特定の患者に限られた発作サンプルから迅速に適応できるパーソナライズされた発作検出・分類フレームワークを提案する。
トレーニング患者の集合からグローバルモデルを学ぶメタGNNベースの分類器を訓練する。
本手法は, 未確認患者20回に限って, 精度82.7%, F1スコア82.08%を達成し, ベースラインよりも優れていた。
論文 参考訳(メタデータ) (2022-11-01T14:12:58Z) - Knowledge-Driven New Drug Recommendation [88.35607943144261]
既存の薬物と新薬のギャップを埋めるために, 薬物依存型マルチフェノタイプ数発学習機を開発した。
EDGEは外部薬効知識ベースを用いて偽陰性監視信号を除去する。
その結果, EDGEは, ROC-AUCスコアよりも7.3%向上していることがわかった。
論文 参考訳(メタデータ) (2022-10-11T16:07:52Z) - Deep learning for drug repurposing: methods, databases, and applications [54.08583498324774]
新しい治療法のために既存の薬物を再利用することは、実験コストの低減で薬物開発を加速する魅力的な解決策である。
本稿では,薬物再資源化のための深層学習手法とツールの活用に関するガイドラインを紹介する。
論文 参考訳(メタデータ) (2022-02-08T09:42:08Z) - AI-based Approach for Safety Signals Detection from Social Networks:
Application to the Levothyrox Scandal in 2017 on Doctissimo Forum [1.4502611532302039]
本稿では,患者のレビューから医薬安全信号を検出するためのAIベースのアプローチを提案する。
フランスにおけるLevothyroxの症例に着目し,薬式変更後にメディアから大きな注目を集めた。
本研究は, 言葉とn-grams頻度, 意味的類似性, 副薬物反応の言及, 感情分析など, 患者のレビューから抽出したNLPに基づく指標について検討した。
論文 参考訳(メタデータ) (2022-02-01T10:17:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。