ScarFinder: a detector of optimal scar trajectories in quantum many-body dynamics
- URL: http://arxiv.org/abs/2504.12383v1
- Date: Wed, 16 Apr 2025 18:00:01 GMT
- Title: ScarFinder: a detector of optimal scar trajectories in quantum many-body dynamics
- Authors: Jie Ren, Andrew Hallam, Lei Ying, Zlatko Papić,
- Abstract summary: Mechanisms that give rise to coherent quantum dynamics, such as quantum many-body scars, have recently attracted much interest.<n>We introduce ScarFinder, a variational framework that reveals possible scar-like dynamics without prior knowledge of scar states or their structure.<n>Our results establish ScarFinder as a powerful, model-agnostic tool for identifying and optimizing coherent dynamics in quantum many-body systems.
- Score: 13.395133118438528
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mechanisms that give rise to coherent quantum dynamics, such as quantum many-body scars, have recently attracted much interest as a way of controlling quantum chaos. However, identifying the presence of quantum scars in general many-body Hamiltonians remains an outstanding challenge. Here we introduce ScarFinder, a variational framework that reveals possible scar-like dynamics without prior knowledge of scar states or their algebraic structure. By iteratively evolving and projecting states within a low-entanglement variational manifold, ScarFinder isolates scarred trajectories by suppressing thermal contributions. We validate the method on the analytically tractable spin-1 XY model, recovering the known scar dynamics, as well as the mixed field Ising model, where we capture and generalize the initial conditions previously associated with ``weak thermalization''. We then apply the method to the PXP model of Rydberg atom arrays, efficiently characterizing its mixed phase space and finding a previously unknown trajectory with nearly-perfect revival dynamics in the thermodynamic limit. Our results establish ScarFinder as a powerful, model-agnostic tool for identifying and optimizing coherent dynamics in quantum many-body systems.
Related papers
- Quantum Rabi oscillations in the semiclassical limit: backreaction on the cavity field and entanglement [89.99666725996975]
We show that for a strong atom-field coupling, when the duration of the $pi $pulse is below $100omega -1$, the behaviour of the atomic excitation probability deviates significantly from the textbook.
In the rest of this work we study numerically the backreaction of the qubit on the cavity field and the resulting atom-field entanglement.
arXiv Detail & Related papers (2025-04-12T23:24:59Z) - Enhancing Revivals Via Projective Measurements in a Quantum Scarred System [51.3422222472898]
Quantum many-body scarred systems exhibit atypical dynamical behavior, evading thermalization and featuring periodic state revivals.<n>We investigate the impact of projective measurements on the dynamics in the scar subspace for the paradigmatic PXP model.<n>We identify a measurement-induced phase resynchronization, countering the natural dephasing of quantum scars, as the key mechanism underlying this phenomenon.
arXiv Detail & Related papers (2025-03-28T17:03:14Z) - Exploring the properties of quantum scars in a toy model [0.0]
We introduce the concept of ergodicity and explore its deviation caused by quantum scars in an isolated quantum system.<n> Quantum scars, originally identified as traces of classically unstable orbits in certain wavefunctions of chaotic systems, have recently regained interest for their role in non-ergodic dynamics.
arXiv Detail & Related papers (2024-11-05T16:31:08Z) - Experimental protocol for observing single quantum many-body scars with transmon qubits [0.0]
Single quantum many-body scars are energy eigenstates which fail to reproduce thermal expectation values of local observables.
Here we propose protocols to observe single scars in architectures of fixed-frequency, fixed-coupling superconducting qubits.
arXiv Detail & Related papers (2024-10-18T17:11:11Z) - Unsupervised learning of quantum many-body scars using intrinsic
dimension [0.0]
Quantum many-body scarred systems contain both thermal and non-thermal scar eigenstates in their spectra.
This scarring phenomenon poses a potential avenue for circumventing decoherence in various quantum engineering applications.
arXiv Detail & Related papers (2024-01-15T16:04:09Z) - Embedding semiclassical periodic orbits into chaotic many-body
Hamiltonians [0.05524804393257919]
We present a general construction that embeds a desired periodic orbit into a family of non-integrable many-body Hamiltonians.
By designing terms that suppress "leakage" of the dynamics outside the variational manifold, we engineer families of Floquet models that host exact scarred dynamics.
arXiv Detail & Related papers (2023-03-02T15:40:47Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - A Quantum-Classical Model of Brain Dynamics [62.997667081978825]
Mixed Weyl symbol is used to describe brain processes at the microscopic level.
Electromagnetic fields and phonon modes involved in the processes are treated either classically or semi-classically.
Zero-point quantum effects can be incorporated into numerical simulations by controlling the temperature of each field mode.
arXiv Detail & Related papers (2023-01-17T15:16:21Z) - Dynamics with autoregressive neural quantum states: application to
critical quench dynamics [41.94295877935867]
We present an alternative general scheme that enables one to capture long-time dynamics of quantum systems in a stable fashion.
We apply the scheme to time-dependent quench dynamics by investigating the Kibble-Zurek mechanism in the two-dimensional quantum Ising model.
arXiv Detail & Related papers (2022-09-07T15:50:00Z) - Spreading of a local excitation in a Quantum Hierarchical Model [62.997667081978825]
We study the dynamics of the quantum Dyson hierarchical model in its paramagnetic phase.
An initial state made by a local excitation of the paramagnetic ground state is considered.
A localization mechanism is found and the excitation remains close to its initial position at arbitrary times.
arXiv Detail & Related papers (2022-07-14T10:05:20Z) - Driving quantum many-body scars in the PXP model [0.0]
We report a study of the effect of periodic driving on the PXP model describing Rydberg atoms.
We show that periodic modulation of the chemical potential gives rise to a rich phase diagram.
We also point out that driving with a spatially inhomogeneous chemical potential allows to stabilize quantum revivals from arbitrary initial states.
arXiv Detail & Related papers (2022-04-28T18:00:08Z) - Controlling many-body dynamics with driven quantum scars in Rydberg atom
arrays [41.74498230885008]
We experimentally investigate non-equilibrium dynamics following rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions.
We discover that scar revivals can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order.
arXiv Detail & Related papers (2020-12-22T19:00:02Z) - Exact many-body scars and their stability in constrained quantum chains [55.41644538483948]
Quantum scars are non-thermal eigenstates characterized by low entanglement entropy.
We study the response of these exact quantum scars to perturbations by analysing the scaling of the fidelity susceptibility with system size.
arXiv Detail & Related papers (2020-11-16T19:05:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.