Embedding semiclassical periodic orbits into chaotic many-body
Hamiltonians
- URL: http://arxiv.org/abs/2303.01359v2
- Date: Tue, 26 Sep 2023 14:44:37 GMT
- Title: Embedding semiclassical periodic orbits into chaotic many-body
Hamiltonians
- Authors: Andrew Hallam, Jean-Yves Desaules, Zlatko Papi\'c
- Abstract summary: We present a general construction that embeds a desired periodic orbit into a family of non-integrable many-body Hamiltonians.
By designing terms that suppress "leakage" of the dynamics outside the variational manifold, we engineer families of Floquet models that host exact scarred dynamics.
- Score: 0.05524804393257919
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Protecting coherent quantum dynamics from chaotic environment is key to
realizations of fragile many-body phenomena and their applications in quantum
technology. We present a general construction that embeds a desired periodic
orbit into a family of non-integrable many-body Hamiltonians, whose dynamics is
otherwise chaotic. Our construction is based on time dependent variational
principle that projects quantum dynamics onto a manifold of low-entangled
states, and it complements earlier approaches for embedding non-thermal
eigenstates, known as quantum many-body scars, into thermalizing spectra. By
designing terms that suppress "leakage" of the dynamics outside the variational
manifold, we engineer families of Floquet models that host exact scarred
dynamics, as we illustrate using a driven Affleck-Kennedy-Lieb-Tasaki model and
a recent experimental realization of scars in a dimerized superconducting qubit
chain.
Related papers
- Exploring the properties of quantum scars in a toy model [0.0]
We introduce the concept of ergodicity and explore its deviation caused by quantum scars in an isolated quantum system.
Quantum scars, originally identified as traces of classically unstable orbits in certain wavefunctions of chaotic systems, have recently regained interest for their role in non-ergodic dynamics.
arXiv Detail & Related papers (2024-11-05T16:31:08Z) - Emergent Fracton Hydrodynamics in the Fractional Quantum Hall Regime of Ultracold Atoms [41.94295877935867]
We show that in the lowest Landau level the system generically relaxes subdiffusively.
The slow relaxation is understood from emergent conservation laws of the total charge.
We discuss the prospect of rotating quantum gases as well as ultracold atoms in optical lattices for observing this unconventional relaxation dynamics.
arXiv Detail & Related papers (2024-10-09T18:00:02Z) - A Floquet-Rydberg quantum simulator for confinement in $\mathbb{Z}_2$
gauge theories [44.99833362998488]
Recent advances in the field of quantum technologies have opened up the road for the realization of small-scale quantum simulators.
We present a scalable Floquet scheme for the quantum simulation of the real-time dynamics in a $mathbbZ$ LGT.
We show that an observation of gauge-invariant confinement dynamics in the Floquet-Rydberg setup is at reach of current experimental techniques.
arXiv Detail & Related papers (2023-11-28T13:01:24Z) - Robust Hamiltonian Engineering for Interacting Qudit Systems [50.591267188664666]
We develop a formalism for the robust dynamical decoupling and Hamiltonian engineering of strongly interacting qudit systems.
We experimentally demonstrate these techniques in a strongly-interacting, disordered ensemble of spin-1 nitrogen-vacancy centers.
arXiv Detail & Related papers (2023-05-16T19:12:41Z) - Embedding Quantum Many-Body Scars into Decoherence-Free Subspaces [13.75243075575507]
Quantum many-body scars are non-thermal excited eigenstates of non-integrable Hamiltonians.
We provide a framework to embed quantum many-body scars into the decoherence-free subspaces of Lindblad master equations.
We propose an experimental scheme to observe the dissipative scarred dynamics based on digital quantum simulations and resetting ancilla qubits.
arXiv Detail & Related papers (2023-04-17T18:00:01Z) - Dynamics with autoregressive neural quantum states: application to
critical quench dynamics [41.94295877935867]
We present an alternative general scheme that enables one to capture long-time dynamics of quantum systems in a stable fashion.
We apply the scheme to time-dependent quench dynamics by investigating the Kibble-Zurek mechanism in the two-dimensional quantum Ising model.
arXiv Detail & Related papers (2022-09-07T15:50:00Z) - Engineering Dissipative Quasicrystals [7.182858821473896]
We discuss the systematic engineering of quasicrystals in open quantum systems where quasiperiodicity is introduced through purely dissipative processes.
Our work suggests a systematic route toward engineering exotic quantum dynamics in open systems, based on insights of non-Hermitian physics.
arXiv Detail & Related papers (2021-11-29T10:35:34Z) - Anomalous hydrodynamics in a class of scarred frustration-free
Hamiltonians [0.0]
We study the interplay between scarring and weak fragmentation in a class of one-dimensional spin-$1$ frustration-free projector Hamiltonians, known as deformed Motzkin chain.
We show that at high energies the particular form of the projectors causes the emergence of disjoint Krylov subspaces for open boundary conditions.
arXiv Detail & Related papers (2021-07-28T19:43:01Z) - Orthogonal Quantum Many-body Scars [0.41998444721319206]
Quantum many-body scars have been put forward as counterexamples to the Eigenstate Thermalization Hypothesis.
Our example provides new insights into the link between quantum ergodicity and many-body entanglement.
arXiv Detail & Related papers (2021-02-15T16:59:35Z) - Controlling many-body dynamics with driven quantum scars in Rydberg atom
arrays [41.74498230885008]
We experimentally investigate non-equilibrium dynamics following rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions.
We discover that scar revivals can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order.
arXiv Detail & Related papers (2020-12-22T19:00:02Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.