論文の概要: Agentic AI Optimisation (AAIO): what it is, how it works, why it matters, and how to deal with it
- arxiv url: http://arxiv.org/abs/2504.12482v1
- Date: Wed, 16 Apr 2025 20:38:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:37:10.700252
- Title: Agentic AI Optimisation (AAIO): what it is, how it works, why it matters, and how to deal with it
- Title(参考訳): エージェントAI最適化(AAIO: Agentic AI Optimisation)とは何か、どのように動作するのか、なぜ重要なのか、どのように対処するか
- Authors: Luciano Floridi, Carlotta Buttaboni, Emmie Hine, Jessica Morley, Claudio Novelli, Tyler Schroder,
- Abstract要約: 本稿では、WebサイトとエージェントAIシステムとの効果的な統合を保証するための重要な方法論として、エージェントAI最適化(AAIO)を紹介します。
ウェブサイトの最適化とエージェントAIの成功の相互依存関係を調べることで、AIOが生み出す悪循環を浮き彫りにする。
この記事は、自律型デジタルエージェントの時代における基本的なデジタル基盤の一部としてのAIOの本質的な役割を肯定し、その利益への公平かつ包括的アクセスを提唱することで締めくくっている。
- 参考スコア(独自算出の注目度): 1.8390952204639035
- License:
- Abstract: The emergence of Agentic Artificial Intelligence (AAI) systems capable of independently initiating digital interactions necessitates a new optimisation paradigm designed explicitly for seamless agent-platform interactions. This article introduces Agentic AI Optimisation (AAIO) as an essential methodology for ensuring effective integration between websites and agentic AI systems. Like how Search Engine Optimisation (SEO) has shaped digital content discoverability, AAIO can define interactions between autonomous AI agents and online platforms. By examining the mutual interdependency between website optimisation and agentic AI success, the article highlights the virtuous cycle that AAIO can create. It further explores the governance, ethical, legal, and social implications (GELSI) of AAIO, emphasising the necessity of proactive regulatory frameworks to mitigate potential negative impacts. The article concludes by affirming AAIO's essential role as part of a fundamental digital infrastructure in the era of autonomous digital agents, advocating for equitable and inclusive access to its benefits.
- Abstract(参考訳): デジタルインタラクションを独立して開始できるエージェント人工知能(AAI)システムの出現は、シームレスなエージェントプラットフォームインタラクションのために明示的に設計された新しい最適化パラダイムを必要とする。
本稿では、WebサイトとエージェントAIシステムとの効果的な統合を保証するための重要な方法論として、エージェントAI最適化(AAIO)を紹介します。
検索エンジン最適化(SEO)がデジタルコンテンツ発見能力を形作るのと同じように、AIOは自律型AIエージェントとオンラインプラットフォーム間のインタラクションを定義することができる。
ウェブサイトの最適化とエージェントAIの成功の相互依存関係を調べることで、AAIOが生み出す悪循環を強調している。
さらに、AIOのガバナンス、倫理的、法的、社会的含意(GELSI)を探求し、潜在的なネガティブな影響を軽減するための積極的な規制枠組みの必要性を強調している。
この記事は、自律型デジタルエージェントの時代における基本的なデジタル基盤の一部としてのAIOの本質的な役割を肯定し、その利益への公平かつ包括的アクセスを提唱することで締めくくっている。
関連論文リスト
- AIOpsLab: A Holistic Framework to Evaluate AI Agents for Enabling Autonomous Clouds [12.464941027105306]
AI for IT Operations(AIOps)は、障害のローカライゼーションや根本原因分析といった複雑な運用タスクを自動化することを目的としており、人間の作業量を削減し、顧客への影響を最小限にする。
大規模言語モデル(LLM)とAIエージェントの最近の進歩は、エンドツーエンドとマルチタスクの自動化を可能にすることで、AIOpsに革命をもたらしている。
マイクロサービスクラウド環境をデプロイし、障害を注入し、ワークロードを生成し、テレメトリデータをエクスポートするフレームワークであるAIOPSLABを紹介します。
論文 参考訳(メタデータ) (2025-01-12T04:17:39Z) - A Learnable Agent Collaboration Network Framework for Personalized Multimodal AI Search Engine [14.123823081267336]
本稿では,Agent Collaboration Network (ACN) と呼ばれる新しいAI検索エンジンフレームワークを提案する。
ACNフレームワークは、複数の専門エージェントが協力して作業し、それぞれがアカウントマネージャ、ソリューションストラテジスト、情報マネージャ、コンテンツクリエータといった異なる役割を担っている。
ACNの特長は、エージェント間のオンライン相乗的調整をサポートする反射フォワード最適化法(RFO)の導入である。
論文 参考訳(メタデータ) (2024-09-01T07:01:22Z) - Principal-Agent Reinforcement Learning: Orchestrating AI Agents with Contracts [20.8288955218712]
本稿では,マルコフ決定プロセス(MDP)のエージェントを一連の契約でガイドするフレームワークを提案する。
我々は,主観とエージェントの方針を反復的に最適化するメタアルゴリズムを提示し,分析する。
次に,本アルゴリズムを深層Q-ラーニングで拡張し,近似誤差の存在下での収束度を解析する。
論文 参考訳(メタデータ) (2024-07-25T14:28:58Z) - Building AI Agents for Autonomous Clouds: Challenges and Design Principles [17.03870042416836]
AI for IT Operations(AIOps)は、障害のローカライゼーションや根本原因分析といった複雑な運用タスクを自動化することを目的としている。
このビジョンペーパーは、まず要求をフレーミングし、次に設計決定について議論することで、そのようなフレームワークの基礎を定めています。
アプリケーションをオーケストレーションし,カオスエンジニアリングを使用してリアルタイム障害を注入するエージェント-クラウドインターフェースを活用したプロトタイプ実装であるAIOpsLabと,障害のローカライズと解決を行うエージェントとのインターフェースを提案する。
論文 参考訳(メタデータ) (2024-07-16T20:40:43Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z) - A Learning-based Incentive Mechanism for Mobile AIGC Service in Decentralized Internet of Vehicles [49.86094523878003]
モバイルAIGCサービスアロケーションのための分散インセンティブ機構を提案する。
我々は、AIGCサービスのRSUへの供給と、IoVコンテキスト内のサービスに対するユーザ要求のバランスを見つけるために、マルチエージェントの深層強化学習を採用している。
論文 参考訳(メタデータ) (2024-03-29T12:46:07Z) - CACA Agent: Capability Collaboration based AI Agent [18.84686313298908]
本稿ではCACAエージェント(Capability Collaboration based AI Agent)を提案する。
CACA Agentは、単一のLLMへの依存を減らすだけでなく、AI Agentを実装するための一連のコラボレーティブ機能を統合する。
本稿ではCACAエージェントの動作とアプリケーションシナリオの拡張について説明する。
論文 参考訳(メタデータ) (2024-03-22T11:42:47Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
人工知能(AI)エージェント作成の鍵となる方法は強化学習(RL)である
本稿では,構造化推論をAIエージェントのポリシーに統合し,学習するための一般的なフレームワークモデルを提案する。
論文 参考訳(メタデータ) (2023-12-22T17:57:57Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - Towards an Interface Description Template for AI-enabled Systems [77.34726150561087]
再利用(Reuse)は、システムアーキテクチャを既存のコンポーネントでインスタンス化しようとする、一般的なシステムアーキテクチャのアプローチである。
現在、コンポーネントが当初目的としていたものと異なるシステムで運用する可搬性を評価するために必要な情報の選択をガイドするフレームワークは存在しない。
我々は、AI対応コンポーネントの主情報をキャプチャするインターフェイス記述テンプレートの確立に向けて、現在進行中の作業について述べる。
論文 参考訳(メタデータ) (2020-07-13T20:30:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。