論文の概要: Agentic AI Optimisation (AAIO): what it is, how it works, why it matters, and how to deal with it
- arxiv url: http://arxiv.org/abs/2504.12482v1
- Date: Wed, 16 Apr 2025 20:38:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-26 02:16:08.543256
- Title: Agentic AI Optimisation (AAIO): what it is, how it works, why it matters, and how to deal with it
- Title(参考訳): エージェントAI最適化(AAIO: Agentic AI Optimisation)とは何か、どのように動作するのか、なぜ重要なのか、どのように対処するか
- Authors: Luciano Floridi, Carlotta Buttaboni, Emmie Hine, Jessica Morley, Claudio Novelli, Tyler Schroder,
- Abstract要約: 本稿では、WebサイトとエージェントAIシステムとの効果的な統合を保証するための重要な方法論として、エージェントAI最適化(AAIO)を紹介します。
ウェブサイトの最適化とエージェントAIの成功の相互依存関係を調べることで、AIOが生み出す悪循環を浮き彫りにする。
この記事は、自律型デジタルエージェントの時代における基本的なデジタル基盤の一部としてのAIOの本質的な役割を肯定し、その利益への公平かつ包括的アクセスを提唱することで締めくくっている。
- 参考スコア(独自算出の注目度): 1.8390952204639035
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The emergence of Agentic Artificial Intelligence (AAI) systems capable of independently initiating digital interactions necessitates a new optimisation paradigm designed explicitly for seamless agent-platform interactions. This article introduces Agentic AI Optimisation (AAIO) as an essential methodology for ensuring effective integration between websites and agentic AI systems. Like how Search Engine Optimisation (SEO) has shaped digital content discoverability, AAIO can define interactions between autonomous AI agents and online platforms. By examining the mutual interdependency between website optimisation and agentic AI success, the article highlights the virtuous cycle that AAIO can create. It further explores the governance, ethical, legal, and social implications (GELSI) of AAIO, emphasising the necessity of proactive regulatory frameworks to mitigate potential negative impacts. The article concludes by affirming AAIO's essential role as part of a fundamental digital infrastructure in the era of autonomous digital agents, advocating for equitable and inclusive access to its benefits.
- Abstract(参考訳): デジタルインタラクションを独立して開始できるエージェント人工知能(AAI)システムの出現は、シームレスなエージェントプラットフォームインタラクションのために明示的に設計された新しい最適化パラダイムを必要とする。
本稿では、WebサイトとエージェントAIシステムとの効果的な統合を保証するための重要な方法論として、エージェントAI最適化(AAIO)を紹介します。
検索エンジン最適化(SEO)がデジタルコンテンツ発見能力を形作るのと同じように、AIOは自律型AIエージェントとオンラインプラットフォーム間のインタラクションを定義することができる。
ウェブサイトの最適化とエージェントAIの成功の相互依存関係を調べることで、AAIOが生み出す悪循環を強調している。
さらに、AIOのガバナンス、倫理的、法的、社会的含意(GELSI)を探求し、潜在的なネガティブな影響を軽減するための積極的な規制枠組みの必要性を強調している。
この記事は、自律型デジタルエージェントの時代における基本的なデジタル基盤の一部としてのAIOの本質的な役割を肯定し、その利益への公平かつ包括的アクセスを提唱することで締めくくっている。
関連論文リスト
- NGENT: Next-Generation AI Agents Must Integrate Multi-Domain Abilities to Achieve Artificial General Intelligence [15.830291699780874]
我々は、次世代AIエージェント(NGENT)が、人工知能(AGI)に進むために、ドメイン間の能力を統合するべきだと論じている。
将来のAIエージェントは、これらの特殊システムの強みを、テキスト、ビジョン、ロボット工学、強化学習、感情知性などにわたって操作できる統一されたフレームワークに合成するべきである。
論文 参考訳(メタデータ) (2025-04-30T08:46:14Z) - Towards Agentic AI Networking in 6G: A Generative Foundation Model-as-Agent Approach [35.05793485239977]
本稿では,AIエージェント間のインタラクション,協調学習,知識伝達を支援する新しいフレームワークであるAgentNetを提案する。
本稿では,デジタルツイン方式の産業自動化とメタバース方式のインフォテインメントシステムという,2つの応用シナリオについて考察する。
論文 参考訳(メタデータ) (2025-03-20T00:48:44Z) - Media and responsible AI governance: a game-theoretic and LLM analysis [61.132523071109354]
本稿では,信頼できるAIシステムを育成する上での,AI開発者,規制当局,ユーザ,メディア間の相互作用について検討する。
進化的ゲーム理論と大言語モデル(LLM)を用いて、異なる規制体制下でこれらのアクター間の戦略的相互作用をモデル化する。
論文 参考訳(メタデータ) (2025-03-12T21:39:38Z) - Agentic AI: Autonomy, Accountability, and the Algorithmic Society [0.2209921757303168]
エージェント人工知能(AI)は、自律的に長期的な目標を追求し、意思決定を行い、複雑なマルチターンを実行することができる。
この指導的役割から積極的執行課題への移行は、法的、経済的、創造的な枠組みを確立した。
我々は,創造性と知的財産,法的・倫理的考察,競争効果の3つの分野における課題を探求する。
論文 参考訳(メタデータ) (2025-02-01T03:14:59Z) - AIOpsLab: A Holistic Framework to Evaluate AI Agents for Enabling Autonomous Clouds [12.464941027105306]
AI for IT Operations(AIOps)は、障害のローカライゼーションや根本原因分析といった複雑な運用タスクを自動化することを目的としており、人間の作業量を削減し、顧客への影響を最小限にする。
大規模言語モデル(LLM)とAIエージェントの最近の進歩は、エンドツーエンドとマルチタスクの自動化を可能にすることで、AIOpsに革命をもたらしている。
マイクロサービスクラウド環境をデプロイし、障害を注入し、ワークロードを生成し、テレメトリデータをエクスポートするフレームワークであるAIOPSLABを紹介します。
論文 参考訳(メタデータ) (2025-01-12T04:17:39Z) - A Learnable Agent Collaboration Network Framework for Personalized Multimodal AI Search Engine [14.123823081267336]
本稿では,Agent Collaboration Network (ACN) と呼ばれる新しいAI検索エンジンフレームワークを提案する。
ACNフレームワークは、複数の専門エージェントが協力して作業し、それぞれがアカウントマネージャ、ソリューションストラテジスト、情報マネージャ、コンテンツクリエータといった異なる役割を担っている。
ACNの特長は、エージェント間のオンライン相乗的調整をサポートする反射フォワード最適化法(RFO)の導入である。
論文 参考訳(メタデータ) (2024-09-01T07:01:22Z) - Principal-Agent Reinforcement Learning: Orchestrating AI Agents with Contracts [20.8288955218712]
本稿では,マルコフ決定プロセス(MDP)のエージェントを一連の契約でガイドするフレームワークを提案する。
我々は,主観とエージェントの方針を反復的に最適化するメタアルゴリズムを提示し,分析する。
次に,本アルゴリズムを深層Q-ラーニングで拡張し,近似誤差の存在下での収束度を解析する。
論文 参考訳(メタデータ) (2024-07-25T14:28:58Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z) - A Learning-based Incentive Mechanism for Mobile AIGC Service in Decentralized Internet of Vehicles [49.86094523878003]
モバイルAIGCサービスアロケーションのための分散インセンティブ機構を提案する。
我々は、AIGCサービスのRSUへの供給と、IoVコンテキスト内のサービスに対するユーザ要求のバランスを見つけるために、マルチエージェントの深層強化学習を採用している。
論文 参考訳(メタデータ) (2024-03-29T12:46:07Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
人工知能(AI)エージェント作成の鍵となる方法は強化学習(RL)である
本稿では,構造化推論をAIエージェントのポリシーに統合し,学習するための一般的なフレームワークモデルを提案する。
論文 参考訳(メタデータ) (2023-12-22T17:57:57Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgentは、大規模な言語モデルを利用してプロアクティブエージェントを生成する新しいフレームワークである。
ProAgentは現状を分析し、チームメイトの意図を観察から推測することができる。
ProAgentは高度なモジュール化と解釈可能性を示し、様々な調整シナリオに容易に統合できる。
論文 参考訳(メタデータ) (2023-08-22T10:36:56Z) - Towards an Interface Description Template for AI-enabled Systems [77.34726150561087]
再利用(Reuse)は、システムアーキテクチャを既存のコンポーネントでインスタンス化しようとする、一般的なシステムアーキテクチャのアプローチである。
現在、コンポーネントが当初目的としていたものと異なるシステムで運用する可搬性を評価するために必要な情報の選択をガイドするフレームワークは存在しない。
我々は、AI対応コンポーネントの主情報をキャプチャするインターフェイス記述テンプレートの確立に向けて、現在進行中の作業について述べる。
論文 参考訳(メタデータ) (2020-07-13T20:30:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。