GeoSense: Evaluating Identification and Application of Geometric Principles in Multimodal Reasoning
- URL: http://arxiv.org/abs/2504.12597v1
- Date: Thu, 17 Apr 2025 02:46:27 GMT
- Title: GeoSense: Evaluating Identification and Application of Geometric Principles in Multimodal Reasoning
- Authors: Liangyu Xu, Yingxiu Zhao, Jingyun Wang, Yingyao Wang, Bu Pi, Chen Wang, Mingliang Zhang, Jihao Gu, Xiang Li, Xiaoyong Zhu, Jun Song, Bo Zheng,
- Abstract summary: Geometry problem-solving (GPS) is a challenging task requiring both visual comprehension and symbolic reasoning.<n>Existing benchmarks fail to jointly assess both dimensions of the human-like geometric reasoning mechanism in large language models.<n>We introduce GeoSense, the first comprehensive bilingual benchmark designed to evaluate the geometric reasoning abilities of MLLMs.
- Score: 20.399408869403437
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Geometry problem-solving (GPS), a challenging task requiring both visual comprehension and symbolic reasoning, effectively measures the reasoning capabilities of multimodal large language models (MLLMs). Humans exhibit strong reasoning ability in this task through accurate identification and adaptive application of geometric principles within visual contexts. However, existing benchmarks fail to jointly assess both dimensions of the human-like geometric reasoning mechanism in MLLMs, remaining a critical gap in assessing their ability to tackle GPS. To this end, we introduce GeoSense, the first comprehensive bilingual benchmark designed to systematically evaluate the geometric reasoning abilities of MLLMs through the lens of geometric principles. GeoSense features a five-level hierarchical framework of geometric principles spanning plane and solid geometry, an intricately annotated dataset of 1,789 problems, and an innovative evaluation strategy. Through extensive experiments on GeoSense with various open-source and closed-source MLLMs, we observe that Gemini-2.0-pro-flash performs best, achieving an overall score of $65.3$. Our in-depth analysis reveals that the identification and application of geometric principles remain a bottleneck for leading MLLMs, jointly hindering their reasoning abilities. These findings underscore GeoSense's potential to guide future advancements in MLLMs' geometric reasoning capabilities, paving the way for more robust and human-like reasoning in artificial intelligence.
Related papers
- Enhancing the Geometric Problem-Solving Ability of Multimodal LLMs via Symbolic-Neural Integration [57.95306827012784]
We propose GeoGen, a pipeline that can automatically generate step-wise reasoning paths for geometry diagrams.<n>By leveraging the precise symbolic reasoning, textbfGeoGen produces large-scale, high-quality question-answer pairs.<n>We train textbfGeoLogic, a Large Language Model (LLM), using synthetic data generated by GeoGen.
arXiv Detail & Related papers (2025-04-17T09:13:46Z) - MATHGLANCE: Multimodal Large Language Models Do Not Know Where to Look in Mathematical Diagrams [65.02628814094639]
Diagrams serve as a fundamental form of visual language, representing complex concepts and their inter-relationships through structured symbols, shapes, and spatial arrangements.<n>Current benchmarks conflate perceptual and reasoning tasks, making it difficult to assess whether Multimodal Large Language Models genuinely understand mathematical diagrams beyond superficial pattern recognition.<n>We introduce MATHGLANCE, a benchmark specifically designed to isolate and evaluate mathematical perception in MLLMs.<n>We construct GeoPeP, a perception-oriented dataset of 200K structured geometry image-text annotated with geometric primitives and precise spatial relationships.
arXiv Detail & Related papers (2025-03-26T17:30:41Z) - Do Large Language Models Truly Understand Geometric Structures? [15.915781154075615]
We introduce the GeomRel dataset to evaluate large language models' understanding of geometric structures.<n>We propose the Geometry Chain-of-Thought (GeoCoT) method, which enhances LLMs' ability to identify geometric relationships.
arXiv Detail & Related papers (2025-01-23T15:52:34Z) - GeoX: Geometric Problem Solving Through Unified Formalized Vision-Language Pre-training [45.42400674977197]
GeoX is a multi-modal large model focusing on geometric understanding and reasoning tasks.<n>We introduce unimodal pre-training to develop a diagram encoder and symbol decoder, enhancing the understanding of geometric images and corpora.<n>We propose a Generator-And-Sampler Transformer (GS-Former) to generate discriminative queries and eliminate uninformative representations from unevenly distributed geometric signals.
arXiv Detail & Related papers (2024-12-16T15:20:03Z) - Fuse, Reason and Verify: Geometry Problem Solving with Parsed Clauses from Diagram [78.79651421493058]
We propose a neural-symbolic model for plane geometry problem solving (PGPS) with three key steps: modal fusion, reasoning process and knowledge verification.
For reasoning, we design an explicable solution program to describe the geometric reasoning process, and employ a self-limited decoder to generate solution program autoregressively.
We also construct a large-scale geometry problem dataset called PGPS9K, containing fine-grained annotations of textual clauses, solution program and involved knowledge solvers.
arXiv Detail & Related papers (2024-07-10T02:45:22Z) - G-LLaVA: Solving Geometric Problem with Multi-Modal Large Language Model [124.68242155098189]
Large language models (LLMs) have shown remarkable proficiency in human-level reasoning and generation capabilities.
G-LLaVA demonstrates exceptional performance in solving geometric problems, significantly outperforming GPT-4-V on the MathVista benchmark with only 7B parameters.
arXiv Detail & Related papers (2023-12-18T17:36:20Z) - GeoQA: A Geometric Question Answering Benchmark Towards Multimodal
Numerical Reasoning [172.36214872466707]
We focus on solving geometric problems, which requires a comprehensive understanding of textual descriptions, visual diagrams, and theorem knowledge.
We propose a Geometric Question Answering dataset GeoQA, containing 5,010 geometric problems with corresponding annotated programs.
arXiv Detail & Related papers (2021-05-30T12:34:17Z) - Inter-GPS: Interpretable Geometry Problem Solving with Formal Language
and Symbolic Reasoning [123.06420835072225]
We construct a new large-scale benchmark, Geometry3K, consisting of 3,002 geometry problems with dense annotation in formal language.
We propose a novel geometry solving approach with formal language and symbolic reasoning, called Interpretable Geometry Problem solver (Inter-GPS)
Inter-GPS incorporates theorem knowledge as conditional rules and performs symbolic reasoning step by step.
arXiv Detail & Related papers (2021-05-10T07:46:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.