論文の概要: Physics Informed Constrained Learning of Dynamics from Static Data
- arxiv url: http://arxiv.org/abs/2504.12675v1
- Date: Thu, 17 Apr 2025 06:06:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:35:05.522763
- Title: Physics Informed Constrained Learning of Dynamics from Static Data
- Title(参考訳): 物理情報を用いた静的データからのダイナミクスの制約付き学習
- Authors: Pengtao Dang, Tingbo Guo, Sha Cao, Chi Zhang,
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)は、制御物理法則をニューラルネットワークのアーキテクチャに統合することにより、システムのダイナミクスをモデル化する。
既存のPINNフレームワークは、完全に観測された時間軸データに依存しており、多くのシステムでは取得が禁止される可能性がある。
本研究では,非時間コースや部分的に観測されたデータを用いて一階微分や動きを近似できる新しいPINN学習パラダイムであるConstrained Learningを開発した。
- 参考スコア(独自算出の注目度): 4.57727355942957
- License:
- Abstract: A physics-informed neural network (PINN) models the dynamics of a system by integrating the governing physical laws into the architecture of a neural network. By enforcing physical laws as constraints, PINN overcomes challenges with data scarsity and potentially high dimensionality. Existing PINN frameworks rely on fully observed time-course data, the acquisition of which could be prohibitive for many systems. In this study, we developed a new PINN learning paradigm, namely Constrained Learning, that enables the approximation of first-order derivatives or motions using non-time course or partially observed data. Computational principles and a general mathematical formulation of Constrained Learning were developed. We further introduced MPOCtrL (Message Passing Optimization-based Constrained Learning) an optimization approach tailored for the Constrained Learning framework that strives to balance the fitting of physical models and observed data. Its code is available at github link: https://github.com/ptdang1001/MPOCtrL Experiments on synthetic and real-world data demonstrated that MPOCtrL can effectively detect the nonlinear dependency between observed data and the underlying physical properties of the system. In particular, on the task of metabolic flux analysis, MPOCtrL outperforms all existing data-driven flux estimators.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、制御物理法則をニューラルネットワークのアーキテクチャに統合することにより、システムのダイナミクスをモデル化する。
制約として物理法則を強制することにより、PINNはデータ不足と潜在的に高次元性の課題を克服する。
既存のPINNフレームワークは、完全に観測された時間軸データに依存しており、多くのシステムでは取得が禁止される可能性がある。
本研究では,非時間コースや部分的に観測されたデータを用いて一階微分や動きを近似できる新しいPINN学習パラダイムであるConstrained Learningを開発した。
計算原理と制約学習の一般的な数学的定式化が開発された。
さらに,MPOCtrL(Message Passing Optimization-based Constrained Learning)を導入し,物理モデルと観測データの適合性のバランスを図った。
https://github.com/ptdang1001/MPOCtrL 合成および実世界のデータに関する実験により、MPOCtrLは観測されたデータとシステムの基盤となる物理的特性の間の非線形依存性を効果的に検出できることを示した。
特にメタボリックフラックス解析のタスクでは、MPOCtrLは既存のデータ駆動フラックス推定器よりも優れている。
関連論文リスト
- Conservation-informed Graph Learning for Spatiotemporal Dynamics Prediction [84.26340606752763]
本稿では,保護インフォームドGNN(CiGNN)について紹介する。
このネットワークは、保守的かつ非保守的な情報が、潜時的行進戦略によって多次元空間を通過する対称性による一般的な対称性保存則に従うように設計されている。
結果は,CiGNNが顕著なベースライン精度と一般化性を示し,様々な時間的ダイナミクスの予測のための学習に容易に適用可能であることを示した。
論文 参考訳(メタデータ) (2024-12-30T13:55:59Z) - Adapting Physics-Informed Neural Networks to Improve ODE Optimization in Mosquito Population Dynamics [0.019972837513980313]
本稿では,ODE システムの前方および逆問題に対していくつかの改良を加えた PINN フレームワークを提案する。
この枠組みは、蚊の常微分方程式によって生じる勾配不均衡と硬い問題に取り組む。
予備的な結果は、物理インフォームド機械学習が生態システムの研究を前進させる大きな可能性を秘めていることを示している。
論文 参考訳(メタデータ) (2024-06-07T17:40:38Z) - Physics-Informed Machine Learning for Seismic Response Prediction OF Nonlinear Steel Moment Resisting Frame Structures [6.483318568088176]
PiML法は、非線形構造の地震応答をモデル化するために、科学的原理と物理法則をディープニューラルネットワークに統合する。
運動方程式を操作することは、システムの非線形性を学習し、物理的に解釈可能な結果の中で解を閉じ込めるのに役立つ。
結果、既存の物理誘導LSTMモデルよりも複雑なデータを処理し、他の非物理データ駆動ネットワークより優れている。
論文 参考訳(メタデータ) (2024-02-28T02:16:03Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Peridynamic Neural Operators: A Data-Driven Nonlocal Constitutive Model
for Complex Material Responses [12.454290779121383]
本研究では,データから非局所法則を学習するPNO(Peridynamic Neural Operator)と呼ばれる新しいニューラルネットワークアーキテクチャを提案する。
このニューラル作用素は、客観性と運動量バランス法則が自動的に保証される状態ベースペリダイナミックスという形でフォワードモデルを提供する。
複雑な応答をキャプチャする能力により、学習したニューラル演算子はベースラインモデルと比較して精度と効率が向上することを示した。
論文 参考訳(メタデータ) (2024-01-11T17:37:20Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Physics-Coupled Spatio-Temporal Active Learning for Dynamical Systems [15.923190628643681]
主な課題の1つは、認識されたデータストリームを生成する根本原因を推測することである。
機械学習ベースの予測モデルの成功は、モデルトレーニングに大量の注釈付きデータを必要とする。
提案するST-PCNNは, 実世界のデータセットと実世界のデータセットの両方において, 極めて少ないインスタンスで最適精度に収束することを示した。
論文 参考訳(メタデータ) (2021-08-11T18:05:55Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z) - Tensor network approaches for learning non-linear dynamical laws [0.0]
制御方程式のテンソルネットワークに基づくパラメータ化により,様々な物理的制約を捉えることができることを示す。
データから構造化された動的法則を復元する物理インフォームドアプローチを提案し、表現性とスケーラビリティの必要性を適応的にバランスさせる。
論文 参考訳(メタデータ) (2020-02-27T19:02:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。