論文の概要: Peridynamic Neural Operators: A Data-Driven Nonlocal Constitutive Model
for Complex Material Responses
- arxiv url: http://arxiv.org/abs/2401.06070v1
- Date: Thu, 11 Jan 2024 17:37:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-12 13:32:49.073107
- Title: Peridynamic Neural Operators: A Data-Driven Nonlocal Constitutive Model
for Complex Material Responses
- Title(参考訳): peridynamic neural operators: 複雑な材料応答のためのデータ駆動型非局所構成モデル
- Authors: Siavash Jafarzadeh, Stewart Silling, Ning Liu, Zhongqiang Zhang, Yue
Yu
- Abstract要約: 本研究では,データから非局所法則を学習するPNO(Peridynamic Neural Operator)と呼ばれる新しいニューラルネットワークアーキテクチャを提案する。
このニューラル作用素は、客観性と運動量バランス法則が自動的に保証される状態ベースペリダイナミックスという形でフォワードモデルを提供する。
複雑な応答をキャプチャする能力により、学習したニューラル演算子はベースラインモデルと比較して精度と効率が向上することを示した。
- 参考スコア(独自算出の注目度): 12.454290779121383
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Neural operators, which can act as implicit solution operators of hidden
governing equations, have recently become popular tools for learning the
responses of complex real-world physical systems. Nevertheless, most neural
operator applications have thus far been data-driven and neglect the intrinsic
preservation of fundamental physical laws in data. In this work, we introduce a
novel integral neural operator architecture called the Peridynamic Neural
Operator (PNO) that learns a nonlocal constitutive law from data. This neural
operator provides a forward model in the form of state-based peridynamics, with
objectivity and momentum balance laws automatically guaranteed. As
applications, we demonstrate the expressivity and efficacy of our model in
learning complex material behaviors from both synthetic and experimental data
sets. We show that, owing to its ability to capture complex responses, our
learned neural operator achieves improved accuracy and efficiency compared to
baseline models that use predefined constitutive laws. Moreover, by preserving
the essential physical laws within the neural network architecture, the PNO is
robust in treating noisy data. The method shows generalizability to different
domain configurations, external loadings, and discretizations.
- Abstract(参考訳): 隠れた支配方程式の暗黙の解演算子として機能するニューラルネットワークは最近、複雑な実世界の物理システムの応答を学ぶための一般的なツールになっている。
それでも、これまでのニューラル演算子アプリケーションはデータ駆動であり、データの基本物理法則の保存を無視している。
本研究では,データから非局所構成則を学習するperiondynamic neural operator (pno) と呼ばれる新しい積分型ニューラルネットワークアーキテクチャを提案する。
このニューラル作用素は、客観性と運動量バランス法則が自動的に保証される状態ベースペリダイナミックスという形でフォワードモデルを提供する。
応用として,合成データと実験データの両方から複雑な物質挙動を学習する際のモデルの有効性と有効性を示す。
複雑な応答を捉える能力により、学習したニューラル演算子は、事前定義された構成法則を使用するベースラインモデルと比較して、精度と効率を向上させる。
さらに、ニューラルネットワークアーキテクチャにおける必須物理法則を保存することにより、PNOはノイズの多いデータを扱う上で堅牢である。
この方法は、異なるドメイン構成、外部ローディング、および離散化に対する一般化性を示す。
関連論文リスト
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Extreme sparsification of physics-augmented neural networks for
interpretable model discovery in mechanics [0.0]
本稿では,L0$-regularizationのスムーズなバージョンを用いて,正規化された物理拡張ニューラルネットワークモデルを訓練することを提案する。
本手法は, 可圧縮・非圧縮熱力学, 降伏関数, 弾塑性の硬化モデルに対して, 解釈可能かつ信頼性の高いモデルが得られることを示す。
論文 参考訳(メタデータ) (2023-10-05T16:28:58Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
Neural Operatorsとして知られるAIフレームワークは、継続的ドメインで定義された関数間のマッピングを学習するための原則的なフレームワークを提供する。
ニューラルオペレータは、計算流体力学、天気予報、物質モデリングなど、多くのアプリケーションで既存のシミュレータを拡張または置き換えることができる。
論文 参考訳(メタデータ) (2023-09-27T00:12:07Z) - On the Trade-off Between Efficiency and Precision of Neural Abstraction [62.046646433536104]
ニューラル抽象化は、最近、複雑な非線形力学モデルの形式近似として導入されている。
我々は形式的帰納的合成法を用いて、これらのセマンティクスを用いた動的モデルをもたらすニューラル抽象化を生成する。
論文 参考訳(メタデータ) (2023-07-28T13:22:32Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
本研究では,高次元経験データから力学系を学習する手法を提案する。
我々は、システムの複数の異なるインスタンスからデータが利用できる設定に焦点を当てる。
我々は、単純な理論的分析と、合成および実世界のデータセットに関する広範な実験を通して行動を研究する。
論文 参考訳(メタデータ) (2023-06-21T07:52:07Z) - INO: Invariant Neural Operators for Learning Complex Physical Systems
with Momentum Conservation [8.218875461185016]
基本保存法則が自動的に保証される物理モデルを学ぶために,新しい統合ニューラル演算子アーキテクチャを導入する。
応用例として、合成データセットと実験データセットの両方から複雑な物質挙動を学習する際のモデルの有効性と有効性を示す。
論文 参考訳(メタデータ) (2022-12-29T16:40:41Z) - Learning Deep Implicit Fourier Neural Operators (IFNOs) with
Applications to Heterogeneous Material Modeling [3.9181541460605116]
本稿では,従来のモデルを用いることなく,データ駆動モデルを用いて素材の応答を予測することを提案する。
材料応答は、負荷条件と結果の変位および/または損傷場の暗黙のマッピングを学習することによってモデル化される。
本稿では,超弾性材料,異方性材料,脆性材料など,いくつかの例について提案手法の性能を実証する。
論文 参考訳(メタデータ) (2022-03-15T19:08:13Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - On the application of Physically-Guided Neural Networks with Internal
Variables to Continuum Problems [0.0]
内部変数を用いた物理誘導型ニューラルネットワーク(PGNNIV)を提案する。
普遍的な物理法則は、あるニューロンの値がシステムの内部状態変数として解釈されるように、ニューラルネットワークの制約として使用される。
これにより、ネットワークの容量が拡大するだけでなく、より高速な収束、少ないデータ要求、追加のノイズフィルタリングといった予測特性も向上する。
トレーニングセットで測定可能な値のみを用いることで,予測的かつ説明的能力を示すことによって,この新たな方法論を連続的な物理問題に拡張する。
論文 参考訳(メタデータ) (2020-11-23T13:06:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。