Excitation transfer and many-body dark states in WQED
- URL: http://arxiv.org/abs/2504.12677v1
- Date: Thu, 17 Apr 2025 06:07:22 GMT
- Title: Excitation transfer and many-body dark states in WQED
- Authors: Wei Chen, Guin-Dar Lin, Hiang-Hua Jen,
- Abstract summary: In one-dimensional waveguide quantum electrodynamics systems, quantum emitters interact through infinite-range, dispersive, and dissipative dipole-dipole interactions.<n>These interactions give rise to long-range periodic behavior and rich many-body physics absent in free space.<n>We construct a set of symmetrized M-excitation dark states and derive analytic expressions for their time-evolution projections.
- Score: 4.608193506134334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In one-dimensional waveguide quantum electrodynamics systems, quantum emitters interact through infinite-range, dispersive, and dissipative dipole-dipole interactions mediated by guided photonic modes. These interactions give rise to long-range periodic behavior and rich many-body physics absent in free space. In this work, we construct a set of symmetrized M-excitation dark states and derive analytic expressions for their time-evolution projections. This framework captures the essential dynamics of excitation transport and storage while significantly reducing computational complexity compared to full quantum simulations. Our analysis reveals a fundamental bound on energy redistribution governed by the structure of dark states and collective dissipation, and discovers that optimal excitation transfer between emitter ensembles converges toward an initial pumped fraction of $N_\text{p}/N \approx 0.55$ for large system sizes. We further examine the robustness of this mechanism under realistic imperfections, including positional disorder, nonradiative decay, and dephasing. These results highlight the role of many-body dark states in enabling efficient and controllable energy transfer, offering new insights into dissipative many-body dynamics in integrated quantum platforms.
Related papers
- Dephasing-assisted diffusive dynamics in superconducting quantum circuits [14.808613294313902]
We first demonstrate the diffusive dynamics assisted by controlled dephasing noise in superconducting quantum circuits.
We show that dephasing can enhance localization in a superconducting qubit array with quasiperiodic order.
By preparing different excitation distributions in the qubit array, we observe that a more localized initial state relaxes to a uniformly distributed mixed state faster with dephasing noise.
arXiv Detail & Related papers (2024-11-23T14:14:36Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Exact solution for the collective non-Markovian decay of two fully excited quantum emitters [0.0]
We analyze a collective non-Markovian decay in a minimal system of two excited emitters coupled to a one-dimensional waveguide.
Our methods shed light on the complexity of collective light-matter interactions and open up a pathway for understanding multiparticle open quantum systems.
arXiv Detail & Related papers (2024-03-20T14:54:45Z) - Solid-state platform for cooperative quantum dynamics driven by correlated emission [3.609024579243597]
We set the stage for the exploration of analogous cooperative phenomena in hybrid solid-state platforms.<n>We develop a comprehensive formalism for the quantum many-body dynamics of an ensemble of solid-state spin defects.<n>Our work lays the foundation for a multi-qubit approach to quantum sensing of solid-state systems.
arXiv Detail & Related papers (2023-09-16T13:12:42Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Quantum Fluctuation Dynamics of Dispersive Superradiant Pulses in a
Hybrid Light-Matter System [0.0]
We consider theoretically a driven-dissipative quantum many-body system consisting of an atomic ensemble in a single-mode optical cavity.
In this hybrid light-matter system the interplay between coherent and dissipative processes leads to superradiant pulses with a build-up of strong correlations.
arXiv Detail & Related papers (2023-02-16T04:34:33Z) - Giant rectification in strongly-interacting driven tilted systems [0.0]
Correlated quantum systems feature a wide range of nontrivial effects emerging from interactions between their constituting particles.
In nonequilibrium scenarios, these manifest in phenomena such as many-body insulating states and anomalous scaling laws of currents of conserved quantities.
We propose a giant rectification scheme based on the asymmetric interplay between strong particle interactions and a tilted potential.
arXiv Detail & Related papers (2022-09-23T16:55:09Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Entanglement propagation and dynamics in non-additive quantum systems [0.0]
Long-range interacting quantum systems are promising candidates for quantum technological applications.
We describe the dynamics of the entanglement entropy in many diverging-body quantum systems.
Quantitative predictions on the shape and timescales of entanglement propagation are made.
arXiv Detail & Related papers (2021-12-21T19:07:17Z) - Subdiffusion via Disordered Quantum Walks [52.77024349608834]
We experimentally prove the feasibility of disordered quantum walks to realize a quantum simulator that is able to model general subdiffusive phenomena.
Our experiment simulates such phenomena by means of a finely controlled insertion of various levels of disorder during the evolution of the walker.
This allows us to explore the full range of subdiffusive behaviors, ranging from anomalous Anderson localization to normal diffusion.
arXiv Detail & Related papers (2020-07-24T13:56:09Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.